Cost–Performance Multi-Objective Optimization of Quaternary-Blended Cement Concrete

Guardado en:
Detalles Bibliográficos
Publicado en:Buildings vol. 15, no. 22 (2025), p. 4074-4107
Autor principal: Abbas, Yassir M
Otros Autores: Babiker Ammar, Elwakeel Abobakr, Khan, Mohammad Iqbal
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:The development of sustainable concrete capable of trading off the mechanical performance and cost remains a persistent scientific and engineering challenge. Although previous research has employed multi-objective optimization for binary and ternary cement blends, the simultaneous optimization of quaternary-blended systems, incorporating multiple supplementary cementitious materials, has received little systematic attention. This study addresses this gap by introducing an interpretable artificial intelligence (AI)-driven approach that integrates the Category Boosting (CatBoost) algorithm with the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) to model and optimize the compressive strength (CS) and total cost of quaternary-blended concretes. A curated database of 810 experimentally documented mixtures was used to train and validate the model. CatBoost achieved superior predictive performance (R2 = 0.987, MAE = 1.574 MPa), while Shapley additive explanations identified curing age, water-to-binder ratio, and Portland cement content as the dominant parameters governing CS. Multi-objective optimization produced Pareto-optimal elite mixtures achieving CS of 51–80 MPa, with a representative 60 MPa mix requiring approximately 62% less cement than conventional designs. The findings establish a scientifically grounded, interpretable methodology for data-driven design of low-carbon, high-performance concretes and demonstrate, for the first time, the viability of AI-assisted multi-criteria optimization for complex quaternary-blended systems. This framework offers both methodological innovation and practical guidance for implementing sustainable construction materials.
ISSN:2075-5309
DOI:10.3390/buildings15224074
Fuente:Engineering Database