Cost–Performance Multi-Objective Optimization of Quaternary-Blended Cement Concrete

שמור ב:
מידע ביבליוגרפי
הוצא לאור ב:Buildings vol. 15, no. 22 (2025), p. 4074-4107
מחבר ראשי: Abbas, Yassir M
מחברים אחרים: Babiker Ammar, Elwakeel Abobakr, Khan, Mohammad Iqbal
יצא לאור:
MDPI AG
נושאים:
גישה מקוונת:Citation/Abstract
Full Text + Graphics
Full Text - PDF
תגים: הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!

MARC

LEADER 00000nab a2200000uu 4500
001 3275506378
003 UK-CbPIL
022 |a 2075-5309 
024 7 |a 10.3390/buildings15224074  |2 doi 
035 |a 3275506378 
045 2 |b d20251115  |b d20251130 
084 |a 231437  |2 nlm 
100 1 |a Abbas, Yassir M  |u Department of Civil Engineering, College of Engineering, King Saud University, Riyadh 12372, Saudi Arabia 
245 1 |a Cost–Performance Multi-Objective Optimization of Quaternary-Blended Cement Concrete 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The development of sustainable concrete capable of trading off the mechanical performance and cost remains a persistent scientific and engineering challenge. Although previous research has employed multi-objective optimization for binary and ternary cement blends, the simultaneous optimization of quaternary-blended systems, incorporating multiple supplementary cementitious materials, has received little systematic attention. This study addresses this gap by introducing an interpretable artificial intelligence (AI)-driven approach that integrates the Category Boosting (CatBoost) algorithm with the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) to model and optimize the compressive strength (CS) and total cost of quaternary-blended concretes. A curated database of 810 experimentally documented mixtures was used to train and validate the model. CatBoost achieved superior predictive performance (R2 = 0.987, MAE = 1.574 MPa), while Shapley additive explanations identified curing age, water-to-binder ratio, and Portland cement content as the dominant parameters governing CS. Multi-objective optimization produced Pareto-optimal elite mixtures achieving CS of 51–80 MPa, with a representative 60 MPa mix requiring approximately 62% less cement than conventional designs. The findings establish a scientifically grounded, interpretable methodology for data-driven design of low-carbon, high-performance concretes and demonstrate, for the first time, the viability of AI-assisted multi-criteria optimization for complex quaternary-blended systems. This framework offers both methodological innovation and practical guidance for implementing sustainable construction materials. 
653 |a Accuracy 
653 |a Concrete 
653 |a Artificial intelligence 
653 |a Datasets 
653 |a Algorithms 
653 |a Multiple criterion 
653 |a Optimization techniques 
653 |a Mechanical properties 
653 |a Cement 
653 |a Multiple objective analysis 
653 |a Sustainable materials 
653 |a Objectives 
653 |a Sorting algorithms 
653 |a Pareto optimum 
653 |a Efficiency 
653 |a Business metrics 
653 |a Portland cement 
653 |a Concrete mixing 
653 |a Genetic algorithms 
653 |a Sustainable development 
653 |a Variables 
653 |a Pareto optimization 
653 |a Mixtures 
653 |a Portland cements 
653 |a Optimization algorithms 
653 |a Compressive strength 
700 1 |a Babiker Ammar  |u School of Civil Engineering, College of Engineering, Sudan University of Science and Technology, Eastern Daim, Khartoum P.O. Box 72, Sudan 
700 1 |a Elwakeel Abobakr  |u ALTEN UK, 3 Pride Pl, Derby DE24 8QR, UK; abobakr.elwakeel@alten.co.uk 
700 1 |a Khan, Mohammad Iqbal  |u Department of Civil Engineering, College of Engineering, King Saud University, Riyadh 12372, Saudi Arabia 
773 0 |t Buildings  |g vol. 15, no. 22 (2025), p. 4074-4107 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275506378/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3275506378/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275506378/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch