Digital Twin-Enabled Framework for Intelligent Monitoring and Anomaly Detection in Multi-Zone Building Systems

Պահպանված է:
Մատենագիտական մանրամասներ
Հրատարակված է:Buildings vol. 15, no. 22 (2025), p. 4030-4054
Հիմնական հեղինակ: Faeze, Hodavand
Այլ հեղինակներ: Issa, Ramaji, Sadeghi Naimeh, Sarmad, Zandi Goharrizi
Հրապարակվել է:
MDPI AG
Խորագրեր:
Առցանց հասանելիություն:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Ցուցիչներ: Ավելացրեք ցուցիչ
Չկան պիտակներ, Եղեք առաջինը, ով նշում է այս գրառումը!
Նկարագրություն
Համառոտագրություն:The growing complexity of modern building systems requires advanced monitoring frameworks to improve fault detection, energy efficiency, and operational resilience. Digital Twin (DT) technology, which integrates real-time data with virtual models of physical systems, has emerged as a promising enabler for predictive diagnostics. Despite growing interest, key challenges remain, including the neglect of short- and long-term forecasting across different scenarios, insufficiently robust data preparation, and the rare validation of models on multi-zone buildings over extended test periods. To address these gaps, this study presents a comprehensive DT-enabled framework for predictive monitoring and anomaly detection, validated in a multi-zone educational building in Rhode Island, USA, using a full year of operational data for validation. The proposed framework integrates a robust data processing pipeline and a comparative analysis of machine learning models, including LSTM, RNN, GRU, ANN, XGBoost, and RF, to forecast short-term (1 h) and long-term (24 h) indoor temperature variations. The LSTM model consistently outperformed other methods, achieving R2 > 0.98 and RMSE < 0.55 °C for all tested rooms. For real-time anomaly detection, we applied the hybrid LSTM–Interquartile Range (IQR) method on one-step-ahead residuals, which successfully identified anomalous deviations from expected patterns. The model’s predictions remained within a ±1 °C error margin for over 90% of the test data, providing reliable forecasting up to 16 h ahead. This study contributes a validated, generalizable DT methodology that addresses key research gaps, offering practical tools for predictive maintenance and operational optimization in complex building environments.
ISSN:2075-5309
DOI:10.3390/buildings15224030
Աղբյուր:Engineering Database