Digital Twin-Enabled Framework for Intelligent Monitoring and Anomaly Detection in Multi-Zone Building Systems

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Buildings vol. 15, no. 22 (2025), p. 4030-4054
1. Verfasser: Faeze, Hodavand
Weitere Verfasser: Issa, Ramaji, Sadeghi Naimeh, Sarmad, Zandi Goharrizi
Veröffentlicht:
MDPI AG
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3275507207
003 UK-CbPIL
022 |a 2075-5309 
024 7 |a 10.3390/buildings15224030  |2 doi 
035 |a 3275507207 
045 2 |b d20250101  |b d20251231 
084 |a 231437  |2 nlm 
100 1 |a Faeze, Hodavand  |u Faculty of Civil Engineering, K. N. Toosi University of Technology, Tehran, 19967-15433, Iran; f.hodavand@email.kntu.ac.ir (F.H.); sadeghi@kntu.ac.ir (N.S.) 
245 1 |a Digital Twin-Enabled Framework for Intelligent Monitoring and Anomaly Detection in Multi-Zone Building Systems 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The growing complexity of modern building systems requires advanced monitoring frameworks to improve fault detection, energy efficiency, and operational resilience. Digital Twin (DT) technology, which integrates real-time data with virtual models of physical systems, has emerged as a promising enabler for predictive diagnostics. Despite growing interest, key challenges remain, including the neglect of short- and long-term forecasting across different scenarios, insufficiently robust data preparation, and the rare validation of models on multi-zone buildings over extended test periods. To address these gaps, this study presents a comprehensive DT-enabled framework for predictive monitoring and anomaly detection, validated in a multi-zone educational building in Rhode Island, USA, using a full year of operational data for validation. The proposed framework integrates a robust data processing pipeline and a comparative analysis of machine learning models, including LSTM, RNN, GRU, ANN, XGBoost, and RF, to forecast short-term (1 h) and long-term (24 h) indoor temperature variations. The LSTM model consistently outperformed other methods, achieving R2 > 0.98 and RMSE < 0.55 °C for all tested rooms. For real-time anomaly detection, we applied the hybrid LSTM–Interquartile Range (IQR) method on one-step-ahead residuals, which successfully identified anomalous deviations from expected patterns. The model’s predictions remained within a ±1 °C error margin for over 90% of the test data, providing reliable forecasting up to 16 h ahead. This study contributes a validated, generalizable DT methodology that addresses key research gaps, offering practical tools for predictive maintenance and operational optimization in complex building environments. 
653 |a Accuracy 
653 |a Comparative analysis 
653 |a Data processing 
653 |a Datasets 
653 |a Deep learning 
653 |a Buildings 
653 |a Energy efficiency 
653 |a Optimization 
653 |a Monitoring 
653 |a Machine learning 
653 |a Fault detection 
653 |a Energy consumption 
653 |a Robustness 
653 |a Internet of Things 
653 |a Artificial intelligence 
653 |a Digital twins 
653 |a Sensors 
653 |a Support vector machines 
653 |a HVAC 
653 |a Algorithms 
653 |a Complexity 
653 |a Anomalies 
653 |a Building management systems 
653 |a Real time 
653 |a Building information modeling 
653 |a Forecasting 
653 |a Cultural heritage 
653 |a Predictive maintenance 
700 1 |a Issa, Ramaji  |u School of Engineering, Construction, and Computing, Roger Williams University, SE1117, One Old Ferry Road, Bristol, RI 02809, USA 
700 1 |a Sadeghi Naimeh  |u Faculty of Civil Engineering, K. N. Toosi University of Technology, Tehran, 19967-15433, Iran; f.hodavand@email.kntu.ac.ir (F.H.); sadeghi@kntu.ac.ir (N.S.) 
700 1 |a Sarmad, Zandi Goharrizi  |u School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran 1439957131, Iran; sarmadzandi@ut.ac.ir 
773 0 |t Buildings  |g vol. 15, no. 22 (2025), p. 4030-4054 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275507207/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3275507207/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275507207/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch