MARC

LEADER 00000nab a2200000uu 4500
001 3275510453
003 UK-CbPIL
022 |a 2227-7102 
022 |a 2076-3344 
024 7 |a 10.3390/educsci15111427  |2 doi 
035 |a 3275510453 
045 2 |b d20250101  |b d20251231 
084 |a 231457  |2 nlm 
100 1 |a van Zyl Sukie  |u Research Unit Self-Directed Learning, North-West University, Potchefstroom 2520, South Africa 
245 1 |a Productive Failure to Promote Deeper Self-Directed Learning in Coding and Robotics Education 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a In a world characterized by unpredictable change, students in Computer Science education must be deeper self-directed learners who can take ownership of their learning and transfer knowledge and skills to new contexts. This article reports on how productive failure was incorporated into an introductory coding and robotics course to enhance deeper self-directed learning. The population was 42 fourth-year pre-service teachers from two different campuses of a South African University. All students were invited to participate in the research, and 37 students consented to participate. A basic interpretative qualitative research design was followed. Guided self-reflection documents were used as data-gathering methods, and data were analyzed by applying thematic data analysis. The research concluded that productive failure, incorporated with cooperative pair programming and self-reflection, in introductory coding and robotics education, shows promising results for developing deeper self-directed learning. Furthermore, it is suggested that solvable problems should initially be introduced, because the new coding and robotics environment already contributes to the complexity of tasks. It was secondly concluded that participants’ self-reflections deepened after engaging with unsolvable problems. Follow-up research is required to determine if the transfer of knowledge and skills to new contexts occurred. 
610 4 |a Johnson & Johnson 
651 4 |a South Africa 
653 |a Problem solving 
653 |a Teaching 
653 |a Pedagogy 
653 |a Students 
653 |a Failure 
653 |a Computer science 
653 |a Cognitive load 
653 |a Preservice teachers 
653 |a Cognition & reasoning 
653 |a Robotics 
653 |a Cooperative learning 
653 |a Science education 
653 |a Knowledge 
653 |a Metacognition 
653 |a Critical thinking 
653 |a Independent study 
653 |a Qualitative research 
653 |a Competence 
653 |a Influence of Technology 
653 |a Active Learning 
653 |a Learning Strategies 
653 |a Learning Processes 
653 |a Direct Instruction 
653 |a Cognitive Processes 
653 |a Computer Science Education 
653 |a Learning Experience 
653 |a Educational Technology 
653 |a Interpersonal Relationship 
653 |a Discussion (Teaching Technique) 
653 |a Computer Oriented Programs 
653 |a Coding 
653 |a Educational Environment 
653 |a Cognitive Ability 
653 |a Introductory Courses 
653 |a Learner Engagement 
653 |a Educational Needs 
700 1 |a Havenga Marietjie  |u Research Unit Self-Directed Learning, North-West University, Vanderbijlpark 1174, South Africa; marietjie.havenga@nwu.ac.za (M.H.); fotiene.avrakotos-king@nwu.ac.za (F.A.-K.) 
700 1 |a Avrakotos-King Fotiene  |u Research Unit Self-Directed Learning, North-West University, Vanderbijlpark 1174, South Africa; marietjie.havenga@nwu.ac.za (M.H.); fotiene.avrakotos-king@nwu.ac.za (F.A.-K.) 
773 0 |t Education Sciences  |g vol. 15, no. 11 (2025), p. 1427-1446 
786 0 |d ProQuest  |t Education Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275510453/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3275510453/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275510453/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch