Automatic Ghost Noise Labeling for 4D mmWave Radar Data in Underground Mine Environments Using LiDAR as Reference

Shranjeno v:
Bibliografske podrobnosti
izdano v:Remote Sensing vol. 17, no. 22 (2025), p. 3732-3751
Glavni avtor: Liu, Hu
Drugi avtorji: Zhang, Zhenghua, Chen, Guoliang, Benndorf Jörg, Yang, Jing
Izdano:
MDPI AG
Teme:
Online dostop:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Oznake: Označite
Brez oznak, prvi označite!

MARC

LEADER 00000nab a2200000uu 4500
001 3275549880
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17223732  |2 doi 
035 |a 3275549880 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Liu, Hu  |u School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China; huliu@cumt.edu.cn (H.L.); tb22160004a41@cumt.edu.cn (G.C.) 
245 1 |a Automatic Ghost Noise Labeling for 4D mmWave Radar Data in Underground Mine Environments Using LiDAR as Reference 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a <sec sec-type="highlights"> What are the main findings? <list list-type="bullet"> <list-item> </list-item>Proposes a LiDAR-assisted two-stage ghost noise automatic labeling method for 4D mmWave radar data, combining distance threshold filtering and density-based clustering analysis (DBSCAN), which demonstrates superior performance compared to single-method approaches. <list-item> Designs a complete automated labeling workflow tailored for underground mining environments, significantly reducing the cost and complexity of manual labeling while addressing current data annotation bottlenecks in research. </list-item> What are the implications of the main findings? <list list-type="bullet"> <list-item> </list-item>Validates the proposed method’s efficiency and robustness in ghost noise detection across three typical underground mining scenarios (straight tunnels, straight tunnels with side tunnels, and cross-tunnel turns), providing a practical solution for optimizing radar data quality in complex confined environments. <list-item> Lays an important foundation for the application of 4D mmWave radar in underground mining environments and provides new technical means for studying ghost noise labeling issues, with potential applications in similar industrial settings. </list-item> In underground mining environments, 4D mmWave radar performance is severely constrained by ghost noise issues resulting from multipath reflections, metal structure interference, and complex terrain, creating significant challenges for target detection, mapping, and autonomous navigation tasks. Existing research lacks efficient automated methods and technical workflows for ghost point labeling in these scenarios. This paper presents a LiDAR-assisted two-stage ghost noise automatic labeling method. The technical workflow first achieves precise mapping between radar and LiDAR point clouds through multi-sensor spatiotemporal alignment (time synchronization and spatial registration) and then labels ghost points using a two-stage strategy that combines distance threshold filtering with density-based clustering analysis (DBSCAN). Experiments covering three typical underground mining scenarios (straight tunnels, straight tunnels with side tunnels, and cross-tunnel turns) demonstrate that the proposed method significantly outperforms single distance threshold or clustering methods in terms of precision (95.15%, 98.81%, and 98.85%, respectively), recall (97.44%, 94.68%, and 98.03%, respectively, slightly lower than distance threshold methods in straight tunnels and cross-tunnel turns), and F1 Score (95.48%, 96.70%, and 98.01%, respectively). The method exhibits efficient ghost noise detection capability and robustness in underground mining environments, providing a practical solution for optimizing radar data quality in complex confined scenarios, with potential for application in similar industrial settings. 
653 |a Sparsity 
653 |a Confined spaces 
653 |a Mines 
653 |a Underground mining 
653 |a Accuracy 
653 |a Labels 
653 |a Datasets 
653 |a Tunnels 
653 |a Labeling 
653 |a Radar 
653 |a Radar data 
653 |a Lidar 
653 |a Synchronization 
653 |a Signal processing 
653 |a Workflow 
653 |a Mapping 
653 |a Automation 
653 |a Annotations 
653 |a Mining 
653 |a Time synchronization 
653 |a Density 
653 |a Cluster analysis 
653 |a Underground mines 
653 |a Ghosts 
653 |a Clustering 
653 |a Sensors 
653 |a Target detection 
653 |a Autonomous navigation 
653 |a Methods 
653 |a Complexity 
653 |a Millimeter waves 
653 |a Robustness (mathematics) 
653 |a Filtration 
700 1 |a Zhang, Zhenghua  |u School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China; huliu@cumt.edu.cn (H.L.); tb22160004a41@cumt.edu.cn (G.C.) 
700 1 |a Chen, Guoliang  |u School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China; huliu@cumt.edu.cn (H.L.); tb22160004a41@cumt.edu.cn (G.C.) 
700 1 |a Benndorf Jörg  |u Department of Mine Surveying and Geodesy, TU Bergakademie Freiberg, 09599 Freiberg, Germany; joerg.benndorf@mabb.tu-freiberg.de 
700 1 |a Yang, Jing  |u State Key Laboratory of Earthquake Dynamics and Forecasting, Institute of Geology, China Earthquake Administration, Beijing 100029, China; jyangsdymn@ies.ac.cn 
773 0 |t Remote Sensing  |g vol. 17, no. 22 (2025), p. 3732-3751 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275549880/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3275549880/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275549880/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch