Advances in Magnesia–Dolomite Refractory Materials: Properties, Emerging Technologies, and Industrial Applications: A Review
Shranjeno v:
| izdano v: | Technologies vol. 13, no. 11 (2025), p. 523-574 |
|---|---|
| Glavni avtor: | |
| Drugi avtorji: | , , , , |
| Izdano: |
MDPI AG
|
| Teme: | |
| Online dostop: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Oznake: |
Brez oznak, prvi označite!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3275564653 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 2227-7080 | ||
| 024 | 7 | |a 10.3390/technologies13110523 |2 doi | |
| 035 | |a 3275564653 | ||
| 045 | 2 | |b d20250101 |b d20251231 | |
| 084 | |a 231637 |2 nlm | ||
| 100 | 1 | |a Díaz-Tato Leonel |u Programa Doctoral en Ingeniería de Materiales, Facultad de Ingeniería Mecánica y Eléctrica (FIME), Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza 66451, Mexico; leonel.diazat@uanl.edu.mx (L.D.-T.); jlopezp@uanl.edu.mx (J.F.L.-P.) | |
| 245 | 1 | |a Advances in Magnesia–Dolomite Refractory Materials: Properties, Emerging Technologies, and Industrial Applications: A Review | |
| 260 | |b MDPI AG |c 2025 | ||
| 513 | |a Journal Article | ||
| 520 | 3 | |a Magnesia-dolomite refractories have emerged as sustainable alternatives to traditional carbon- or chromium-containing linings in steelmaking and cement industries. Their outstanding thermochemical stability, high refractoriness, and strong basic slag compatibility make them suitable for converters, electric arc furnaces (EAF), and argon–oxygen decarburization (AOD) units. However, their practical application has long been constrained by hydration and thermal shock sensitivity associated with free CaO and open porosity. Recent advances, including optimized raw material purity, fused co-clinker synthesis, nano-additive incorporation (TiO2, MgAl2O4 spinel, FeAl2O4), and improved sintering strategies, have significantly enhanced density, mechanical strength, and hydration resistance. Emerging technologies such as co-sintered magnesia–dolomite composites and additive-assisted microstructural tailoring have enabled superior corrosion resistance and extended service life. This review provides a comprehensive analysis of physicochemical mechanisms, processing routes, and industrial performance of magnesia–dolomite refractories, with special emphasis on their contribution to technological innovation, decarbonization, and circular economy strategies in high-temperature industries. | |
| 653 | |a Argon | ||
| 653 | |a Technological change | ||
| 653 | |a Decarburization | ||
| 653 | |a Plasma sintering | ||
| 653 | |a Optimization | ||
| 653 | |a Thermal resistance | ||
| 653 | |a Service life | ||
| 653 | |a Raw materials | ||
| 653 | |a Sintering (powder metallurgy) | ||
| 653 | |a Manufacturing | ||
| 653 | |a Corrosion resistance | ||
| 653 | |a Circular economy | ||
| 653 | |a Production costs | ||
| 653 | |a Hydration | ||
| 653 | |a Energy consumption | ||
| 653 | |a High temperature | ||
| 653 | |a Basic refractories | ||
| 653 | |a Linings | ||
| 653 | |a Electric arc furnaces | ||
| 653 | |a Slag | ||
| 653 | |a Carbon | ||
| 653 | |a Temperature | ||
| 653 | |a Sustainability | ||
| 653 | |a Titanium dioxide | ||
| 653 | |a Dolomite | ||
| 653 | |a Industrial applications | ||
| 653 | |a Cost analysis | ||
| 653 | |a Energy efficiency | ||
| 653 | |a Basic converters | ||
| 653 | |a Clinker | ||
| 653 | |a Refractory materials | ||
| 653 | |a Thermal shock | ||
| 653 | |a Reproducibility | ||
| 653 | |a New technology | ||
| 653 | |a Chromium | ||
| 653 | |a Steel making | ||
| 700 | 1 | |a Iturralde Carrera Luis Angel |u Facultad de Ingeniería, Universidad Autónoma de Querétaro, Santiago de Querétaro 76010, Mexico; marcosaviles@ieee.org (M.A.); juvenal@uaq.edu.mx (J.R.-R.) | |
| 700 | 1 | |a López-Perales, Jesús Fernando |u Programa Doctoral en Ingeniería de Materiales, Facultad de Ingeniería Mecánica y Eléctrica (FIME), Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza 66451, Mexico; leonel.diazat@uanl.edu.mx (L.D.-T.); jlopezp@uanl.edu.mx (J.F.L.-P.) | |
| 700 | 1 | |a Aviles, Marcos |u Facultad de Ingeniería, Universidad Autónoma de Querétaro, Santiago de Querétaro 76010, Mexico; marcosaviles@ieee.org (M.A.); juvenal@uaq.edu.mx (J.R.-R.) | |
| 700 | 1 | |a Rodríguez-Castellanos, Edén Amaral |u Programa Doctoral en Ingeniería de Materiales, Facultad de Ingeniería Mecánica y Eléctrica (FIME), Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza 66451, Mexico; leonel.diazat@uanl.edu.mx (L.D.-T.); jlopezp@uanl.edu.mx (J.F.L.-P.) | |
| 700 | 1 | |a Rodríguez-Resendiz Juvenal |u Facultad de Ingeniería, Universidad Autónoma de Querétaro, Santiago de Querétaro 76010, Mexico; marcosaviles@ieee.org (M.A.); juvenal@uaq.edu.mx (J.R.-R.) | |
| 773 | 0 | |t Technologies |g vol. 13, no. 11 (2025), p. 523-574 | |
| 786 | 0 | |d ProQuest |t Materials Science Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3275564653/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text + Graphics |u https://www.proquest.com/docview/3275564653/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3275564653/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |