Brain-inspired signal processing for detecting stress during mental arithmetic tasks

Đã lưu trong:
Chi tiết về thư mục
Xuất bản năm:Brain Informatics vol. 12, no. 1 (Dec 2025), p. 34
Tác giả chính: Belwafi, Kais
Tác giả khác: Alsuwaidi, Ahmed, Mejri, Sami, Djemal, Ridha
Được phát hành:
Springer Nature B.V.
Những chủ đề:
Truy cập trực tuyến:Citation/Abstract
Full Text
Full Text - PDF
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
Miêu tả
Bài tóm tắt:Brain-Computer Interfaces provide promising alternatives for detecting stress and enhancing emotional resilience. This study introduces a lightweight, subject-independent method for detecting stress during arithmetic tasks, designed for low computational cost and real-time use. Stress detection is performed through ElectroEncephaloGraphy (EEG) signal analysis using a simplified processing pipeline. The method begins with preprocessing the EEG recordings to eliminate artifacts and focus on relevant frequency bands (, , and ). Features are extracted by calculating band power and its deviation from a baseline. A statistical thresholding mechanism classifies stress and no-stress epochs without the need for subject-specific calibration. The approach was validated on a publicly available dataset of 36 subjects and achieved an average accuracy of 88.89%. The method effectively identifies stress-related brainwave patterns while maintaining efficiency, making it suitable for embedded and wearable devices. Unlike many existing systems, it does not require subject-specific training, enhancing its applicability in real-world environments.
số ISSN:2198-4018
2198-4026
DOI:10.1186/s40708-025-00281-y
Nguồn:Advanced Technologies & Aerospace Database