Hybrid Partial-Data-Driven H∞ Robust Tracking Control for Linear Stochastic Systems with Discrete-Time Observation of Reference Trajectory

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:Mathematics vol. 13, no. 23 (2025), p. 3854-3876
المؤلف الرئيسي: Zhang Yiteng
مؤلفون آخرون: Lin, Xiangyun, Zhang, Rui
منشور في:
MDPI AG
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full Text + Graphics
Full Text - PDF
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
مستخلص:A hybrid robust <inline-formula>H∞</inline-formula> tracking-control design method is studied for linear stochastic systems in which the parameters of the reference system are unknown but inferred from discrete-time observations. First, the reference system parameters are estimated by the least-squares method, and a corresponding data-dependent augmented system is constructed. Second, a Riccati matrix inequality is established for these systems, and a state-feedback <inline-formula>H∞</inline-formula> controller is designed to improve tracking performance. Third, to mitigate large tracking errors, an error-feedback control scheme is introduced to compensate for dynamic tracking deviations. These results yield a hybrid control framework that integrates data observation, state-feedback <inline-formula>H∞</inline-formula> control, and error-feedback <inline-formula>H∞</inline-formula> control to address the tracking problem more effectively. Two numerical examples and one practical example demonstrate the effectiveness of the proposed method.
تدمد:2227-7390
DOI:10.3390/math13233854
المصدر:Engineering Database