A Facile Synthesis Strategy for N-Doped Graphene Quantum Dots Electrode Materials: Electrochemical Behaviors and Universal Energy Storage Mechanism

Na minha lista:
Detalhes bibliográficos
Publicado no:Materials vol. 18, no. 23 (2025), p. 5373-5391
Autor principal: Wang, Yongbo
Outros Autores: Dai Shichao, Guo Jinghe, Wang, Yanxiang, Tang, Bo
Publicado em:
MDPI AG
Assuntos:
Acesso em linha:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
Descrição
Resumo:In this paper, a simple hydrothermal approach is employed to prepare nitrogen-doped graphene quantum dots (N-GQDs) with controllable size and structural features, where citric acid and ethylenediamine served as the carbon and nitrogen precursors, respectively. The influence of hydrothermal temperature and duration on the structural features, surface chemistry, and electrochemical behavior of N-GQDs is systematically investigated. The capacitive behavior of N-GQD electrodes exhibits typical pseudocapacitive characteristics, primarily attributed to the surface functional groups. The NG-2 electrode (180 °C, 6 h) demonstrates a specific capacitance of 309.8 F g−1 at 1 A g−1 and maintains 98.1% of its initial capacitance after 8000 cycles, confirming excellent stability. Density functional theory (DFT) results demonstrate that the co-presence of graphitic and pyrrolic nitrogen induces a synergistic modulation of the electronic structure, resulting in improved charge-transfer kinetics and surface reactivity of N-GQDs compared to single-type nitrogen doping. Additionally, NG-2//activated carbon (AC)-asymmetric supercapacitor (ASC) achieves an energy density of 22.5 Wh kg−1 at 500 W kg−1 and maintains outstanding cycling stability. This work provides valuable insights into the design and application of N-GQDs for advanced energy storage devices.
ISSN:1996-1944
DOI:10.3390/ma18235373
Fonte:Materials Science Database