Advanced Optimization for Big Data Streams with Quantum Insights for Real-time Big Data Analytics
সংরক্ষণ করুন:
| প্রকাশিত: | ADCAIJ : Advances in Distributed Computing and Artificial Intelligence Journal vol. 14 (2025), p. e32876-e32891 |
|---|---|
| প্রধান লেখক: | |
| অন্যান্য লেখক: | |
| প্রকাশিত: |
Ediciones Universidad de Salamanca
|
| বিষয়গুলি: | |
| অনলাইন ব্যবহার করুন: | Citation/Abstract Full Text - PDF |
| ট্যাগগুলো: |
কোনো ট্যাগ নেই, প্রথমজন হিসাবে ট্যাগ করুন!
|
| সার সংক্ষেপ: | Big data analytics encounters scalability, latency, and privacy challenges, especially within real-time streaming contexts. We propose the Privacy-Aware Quantum Stream (PAQS), a distributed framework inspired by quantum principles, to overcome these obstacles. PAQS utilizes quantum superposition to effectively represent high-dimensional data, quantum entanglement for sophisticated correlation analysis and anomaly detection, and federated learning combined with homomorphic encryption to maintain privacy without compromising performance. The adaptive switching mechanism balances quantum-inspired and classical processing according to sensitivity and dimensionality criteria. Experiments are conducted on three datasets—OpenStreetMap, MIMIC-III, and KITTI, which show significant improvements: a throughput of 2. 53 TB/sec, a 60 % reduction in latency, an anomaly detection accuracy of 92. 3 %, and an 85. 4 % decrease in privacy violations when compared to baselines. These findings validate that PAQS provides consistent, secure, and scalable real-time analytics, positioning it as a strong solution for smart cities, healthcare, and autonomous transportation applications. |
|---|---|
| আইএসএসএন: | 2255-2863 |
| ডিওআই: | 10.14201/adcaij.32876 |
| সম্পদ: | Advanced Technologies & Aerospace Database |