Improving Parameter Extraction in Photovoltaic Models: The Role of Initialization Methods in Particle Swarm

Guardado en:
Detalles Bibliográficos
Publicado en:E3S Web of Conferences vol. 680 (2025)
Autor principal: Ismail Abazine
Otros Autores: Elyaqouti, Mustapha, El Hanafi Arjdal, Saadaoui, Driss, Choulli, Imade, Dris Ben Hmamou, Lidaighbi, Souad, Elhammoudy, Abdelfattah, Souaidi, Fatima Ezzahrae, Ayoub Lahboub, Brahim El Fahmi
Publicado:
EDP Sciences
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:This study investigates the effect of initialization strategies on the performance of Particle Swarm Optimization (PSO) for parameter extraction in photovoltaic (PV) models, specifically the Single Diode Model (SDM) and the Double Diode Model (DDM). Two initialization methods, Uniform Random Sampling Initialization (URSI) and Latin Hypercube Sampling (LHS), were compared to evaluate their impact on accuracy, stability, and computational efficiency. For the SDM, LHS reduced the mean RMSE from 1.7798×10⁻³ to 1.7127×10⁻³ (a 3.8% decrease) and the standard deviation by 19.7%, while maintaining a comparable computational time of 0.3988 s compared to 0.3948 s. In the DDM, LHS achieved a mean RMSE of 7.9489×10⁻⁴, representing a 2.3% reduction relative to 8.1348×10⁻⁴, and decreased the standard deviation by 50.4% from 1.2176×10⁻⁴ to 6.0390×10⁻⁵, with nearly identical execution times. Overall, the results indicate that LHS significantly enhances the reliability and robustness of PSO by improving convergence stability and parameter accuracy under various operating conditions. These findings highlight the critical role of efficient initialization strategies in metaheuristic optimization for accurate and consistent PV system modelling.
ISSN:2555-0403
2267-1242
DOI:10.1051/e3sconf/202568000135
Fuente:Engineering Database