Improving Parameter Extraction in Photovoltaic Models: The Role of Initialization Methods in Particle Swarm

Guardat en:
Dades bibliogràfiques
Publicat a:E3S Web of Conferences vol. 680 (2025)
Autor principal: Ismail Abazine
Altres autors: Elyaqouti, Mustapha, El Hanafi Arjdal, Saadaoui, Driss, Choulli, Imade, Dris Ben Hmamou, Lidaighbi, Souad, Elhammoudy, Abdelfattah, Souaidi, Fatima Ezzahrae, Ayoub Lahboub, Brahim El Fahmi
Publicat:
EDP Sciences
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3284873234
003 UK-CbPIL
022 |a 2555-0403 
022 |a 2267-1242 
024 7 |a 10.1051/e3sconf/202568000135  |2 doi 
035 |a 3284873234 
045 2 |b d20250101  |b d20251231 
084 |a 268330  |2 nlm 
100 1 |a Ismail Abazine 
245 1 |a Improving Parameter Extraction in Photovoltaic Models: The Role of Initialization Methods in Particle Swarm 
260 |b EDP Sciences  |c 2025 
513 |a Conference Proceedings 
520 3 |a This study investigates the effect of initialization strategies on the performance of Particle Swarm Optimization (PSO) for parameter extraction in photovoltaic (PV) models, specifically the Single Diode Model (SDM) and the Double Diode Model (DDM). Two initialization methods, Uniform Random Sampling Initialization (URSI) and Latin Hypercube Sampling (LHS), were compared to evaluate their impact on accuracy, stability, and computational efficiency. For the SDM, LHS reduced the mean RMSE from 1.7798×10⁻³ to 1.7127×10⁻³ (a 3.8% decrease) and the standard deviation by 19.7%, while maintaining a comparable computational time of 0.3988 s compared to 0.3948 s. In the DDM, LHS achieved a mean RMSE of 7.9489×10⁻⁴, representing a 2.3% reduction relative to 8.1348×10⁻⁴, and decreased the standard deviation by 50.4% from 1.2176×10⁻⁴ to 6.0390×10⁻⁵, with nearly identical execution times. Overall, the results indicate that LHS significantly enhances the reliability and robustness of PSO by improving convergence stability and parameter accuracy under various operating conditions. These findings highlight the critical role of efficient initialization strategies in metaheuristic optimization for accurate and consistent PV system modelling. 
653 |a Accuracy 
653 |a Particle swarm optimization 
653 |a Photovoltaics 
653 |a Statistical sampling 
653 |a Standard deviation 
653 |a Computational efficiency 
653 |a Computer applications 
653 |a Hypercubes 
653 |a Stability 
653 |a Random sampling 
653 |a Parameters 
653 |a Computing time 
653 |a Heuristic methods 
653 |a Photovoltaic cells 
653 |a Latin hypercube sampling 
653 |a Environmental 
700 1 |a Elyaqouti, Mustapha 
700 1 |a El Hanafi Arjdal 
700 1 |a Saadaoui, Driss 
700 1 |a Choulli, Imade 
700 1 |a Dris Ben Hmamou 
700 1 |a Lidaighbi, Souad 
700 1 |a Elhammoudy, Abdelfattah 
700 1 |a Souaidi, Fatima Ezzahrae 
700 1 |a Ayoub Lahboub 
700 1 |a Brahim El Fahmi 
773 0 |t E3S Web of Conferences  |g vol. 680 (2025) 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3284873234/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3284873234/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch