A New Multisensor Data‐Level Fusion Method for Deep Learning–Based Fault Diagnosis of Rotating Machines: Considering Varying Sampling Frequencies and Different Sensor Mounting Directions in Vibration Signal Analysis

Guardado en:
Bibliografiske detaljer
Udgivet i:International Journal of Rotating Machinery vol. 2025, no. 1 (2025)
Hovedforfatter: Kibrete, Fasikaw
Andre forfattere: Woldemichael, Dereje Engida, Gebremedhen, Hailu Shimels
Udgivet:
John Wiley & Sons, Inc.
Fag:
Online adgang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3285745720
003 UK-CbPIL
022 |a 1023-621X 
022 |a 1542-3034 
024 7 |a 10.1155/ijrm/8567148  |2 doi 
035 |a 3285745720 
045 2 |b d20250101  |b d20251231 
084 |a 130661  |2 nlm 
100 1 |a Kibrete, Fasikaw  |u Department of Mechanical Engineering, , College of Engineering, , Addis Ababa Science and Technology University, , Addis Ababa, , Ethiopia, <url href="http://aastu.edu.et">aastu.edu.et</url> 
245 1 |a A New Multisensor Data‐Level Fusion Method for Deep Learning–Based Fault Diagnosis of Rotating Machines: Considering Varying Sampling Frequencies and Different Sensor Mounting Directions in Vibration Signal Analysis 
260 |b John Wiley & Sons, Inc.  |c 2025 
513 |a Journal Article 
520 3 |a Vibration signals are the most widely used condition monitoring data in deep learning–based fault diagnosis for rotating machines. However, relying solely on data from a single vibration sensor often limits the diagnostic accuracy of the diagnosis models. To overcome this challenge, researchers have explored multisensor data fusion techniques. Nevertheless, existing fusion approaches face challenges when dealing with variations in sampling frequencies and different sensor mounting orientations. In this paper, therefore, we propose a new data‐level fusion method, compensated synchronized resampling and weighted averaging fusion (CSR‐WAF), to enhance the accuracy of deep learning–based fault diagnosis in rotating machines. In this method, the CSR component first synchronizes the sampling frequencies of vibration data and compensates for sensor orientation. Subsequently, the WAF technique fuses the multisensor vibration data. The fused data are then processed using a one‐dimensional convolutional neural network (1DCNN) for fault diagnosis. Experiments conducted using motor bearing vibration signals sampled at 12 and 48 kHz show that the proposed CSR‐WAF‐1DCNN method achieves an accuracy of 99.87%. Furthermore, the proposed method is applied to gearbox fault diagnosis, accounting for different sensor mounting directions, and achieves an accuracy of 97.91%. These results confirm the reliable performance and practical applicability of CSR‐WAF‐1DCNN across diverse data acquisition scenarios. 
653 |a Accuracy 
653 |a Signal analysis 
653 |a Deep learning 
653 |a Fault diagnosis 
653 |a Data acquisition 
653 |a Vibration monitoring 
653 |a Resampling 
653 |a Artificial neural networks 
653 |a Machinery 
653 |a Neural networks 
653 |a Sensors 
653 |a Rotating machines 
653 |a Vibration analysis 
653 |a Data integration 
653 |a Methods 
653 |a Multisensor fusion 
653 |a Sampling 
653 |a Condition monitoring 
700 1 |a Woldemichael, Dereje Engida  |u Department of Mechanical Engineering, , College of Engineering, , Addis Ababa Science and Technology University, , Addis Ababa, , Ethiopia, <url href="http://aastu.edu.et">aastu.edu.et</url> 
700 1 |a Gebremedhen, Hailu Shimels  |u Department of Mechanical Engineering, , College of Engineering, , Addis Ababa Science and Technology University, , Addis Ababa, , Ethiopia, <url href="http://aastu.edu.et">aastu.edu.et</url> 
773 0 |t International Journal of Rotating Machinery  |g vol. 2025, no. 1 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3285745720/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3285745720/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3285745720/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch