Affordable Audio Hardware and Artificial Intelligence Can Transform the Dementia Care Pipeline

Guardado en:
Detalles Bibliográficos
Publicado en:Algorithms vol. 18, no. 12 (2025), p. 787-819
Autor principal: Ilyas, Potamitis
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:Population aging is increasing dementia care demand. We present an audio-driven monitoring pipeline that operates either on mobile phones, microcontroller nodes, or smart television sets. The system combines audio signal processing with AI tools for structured interpretation. Preprocessing includes voice activity detection, speaker diarization, automatic speech recognition for dialogs, and speech-emotion recognition. An audio classifier detects home-care–relevant events (cough, cane taps, thuds, knocks, and speech). A large language model integrates transcripts, acoustic features, and a consented household knowledge base to produce a daily caregiver report covering orientation/disorientation (person, place, and time), delusion themes, agitation events, health proxies, and safety flags (e.g., exit seeking and falling). The pipeline targets real-time monitoring in homes and facilities, and it is an adjunct to caregiving, not a diagnostic device. Evaluation focuses on human-in-the-loop review, various audio/speech modalities, and the ability of AI to integrate information and reason. Intended users are low-income households in remote settings where in-person caregiving cannot be secured, enabling remote monitoring support for older adults with dementia.
ISSN:1999-4893
DOI:10.3390/a18120787
Fuente:Engineering Database