Affordable Audio Hardware and Artificial Intelligence Can Transform the Dementia Care Pipeline

Guardado en:
Detalles Bibliográficos
Publicado en:Algorithms vol. 18, no. 12 (2025), p. 787-819
Autor principal: Ilyas, Potamitis
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3286250067
003 UK-CbPIL
022 |a 1999-4893 
024 7 |a 10.3390/a18120787  |2 doi 
035 |a 3286250067 
045 2 |b d20250101  |b d20251231 
084 |a 231333  |2 nlm 
100 1 |a Ilyas, Potamitis 
245 1 |a Affordable Audio Hardware and Artificial Intelligence Can Transform the Dementia Care Pipeline 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Population aging is increasing dementia care demand. We present an audio-driven monitoring pipeline that operates either on mobile phones, microcontroller nodes, or smart television sets. The system combines audio signal processing with AI tools for structured interpretation. Preprocessing includes voice activity detection, speaker diarization, automatic speech recognition for dialogs, and speech-emotion recognition. An audio classifier detects home-care–relevant events (cough, cane taps, thuds, knocks, and speech). A large language model integrates transcripts, acoustic features, and a consented household knowledge base to produce a daily caregiver report covering orientation/disorientation (person, place, and time), delusion themes, agitation events, health proxies, and safety flags (e.g., exit seeking and falling). The pipeline targets real-time monitoring in homes and facilities, and it is an adjunct to caregiving, not a diagnostic device. Evaluation focuses on human-in-the-loop review, various audio/speech modalities, and the ability of AI to integrate information and reason. Intended users are low-income households in remote settings where in-person caregiving cannot be secured, enabling remote monitoring support for older adults with dementia. 
653 |a Caregivers 
653 |a Alzheimer's disease 
653 |a Dementia 
653 |a Signal processing 
653 |a Remote monitoring 
653 |a Feasibility 
653 |a Older people 
653 |a Privacy 
653 |a Mobility 
653 |a Artificial intelligence 
653 |a Aging 
653 |a Cameras 
653 |a Large language models 
653 |a Emotion recognition 
653 |a Voice recognition 
653 |a Speech recognition 
653 |a Biomarkers 
653 |a Classifiers 
653 |a Voice activity detectors 
653 |a Audio data 
653 |a Language modeling 
653 |a Acoustics 
653 |a Real time 
653 |a Medical screening 
653 |a Mobile phones 
653 |a Automatic speech recognition 
653 |a Speech 
773 0 |t Algorithms  |g vol. 18, no. 12 (2025), p. 787-819 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286250067/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286250067/fulltextwithgraphics/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286250067/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch