Synergistic Carbon Support Engineering in Composite Catalyst Layer for High‐Performance PEM Fuel Cells

Guardado en:
Detalles Bibliográficos
Publicado en:Carbon Energy vol. 7, no. 12 (Dec 1, 2025)
Autor principal: Li, Siming
Otros Autores: Pei, Suizhu, Sun, Enyang, Liu, Zhichao, Zhang, Jieyu, Li, Junjie, Chen, Huili, Liang, Haiwei, Xiang, Zhonghua, Wang, Min, Li, Yawei
Publicado:
John Wiley & Sons, Inc.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:ABSTRACT This study introduces an innovative composite cathode catalyst layer (CCL) design for proton exchange membrane fuel cells (PEMFCs), combining Pt‐supported by Vulcan carbon (Pt/V) and Ketjenblack carbon (Pt/KB) to overcome mass transport limitations and ionomer‐induced catalyst poisoning. The composite architecture strategically positions Pt/V layer with lower ionomer‐to‐carbon ratio (I/C = 0.6) near the proton exchange membrane to maximize surface Pt accessibility and oxygen transport efficiency, whereas Pt/KB layer (I/C = 0.9) adjacent to the gas diffusion layer leverages its porous structure to shield Pt from sulfonate group poisoning and enhance proton conduction under low‐humidity conditions. This synergistic carbon support engineering achieves a balance between reactant accessibility and catalyst utilization, as demonstrated by improved power density, reduced transport resistance, and higher Pt utilization under dry conditions. These findings establish a new paradigm for low‐Pt CCL design through rational carbon support hybridization and ionomer gradient engineering, offering a scalable solution for high‐performance PEMFCs in energy‐critical applications.
ISSN:2637-9368
DOI:10.1002/cey2.70080
Fuente:Advanced Technologies & Aerospace Database