Hybrid Cramér-Rao Bound for Quantum Bayes Point Estimation with Nuisance Parameters

Guardado en:
Detalles Bibliográficos
Publicado en:Entropy vol. 27, no. 12 (2025), p. 1184-1205
Autor principal: Zhang, Jianchao
Otros Autores: Suzuki, Jun
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:We develop a hybrid framework for quantum parameter estimation in the presence of nuisance parameters. In this scheme, the parameters of interest are treated as fixed non-random parameters while nuisance parameters are integrated out with respect to a prior (random parameters). Within this setting, we introduce the hybrid partial quantum Fisher information matrix (hpQFIM), defined by prior-averaging the nuisance block of the QFIM and taking a Schur complement, and derive a corresponding Cramér–Rao-type lower bound on the hybrid risk. We establish the structural properties of the hpQFIM, including inequalities that bracket it between computationally tractable approximations, as well as limiting behaviors under extreme priors. Operationally, the hybrid approach improves over pure point estimation since the optimal measurement for the parameters of interest depends only on the prior distribution of the nuisance, rather than on its unknown value. We illustrate the framework with analytically solvable qubit models and numerical examples, clarifying how partial prior information on nuisance variables can be systematically exploited in quantum metrology.
ISSN:1099-4300
DOI:10.3390/e27121184
Fuente:Engineering Database