Hybrid Cramér-Rao Bound for Quantum Bayes Point Estimation with Nuisance Parameters

Guardado en:
Detalles Bibliográficos
Publicado en:Entropy vol. 27, no. 12 (2025), p. 1184-1205
Autor principal: Zhang, Jianchao
Otros Autores: Suzuki, Jun
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3286279892
003 UK-CbPIL
022 |a 1099-4300 
024 7 |a 10.3390/e27121184  |2 doi 
035 |a 3286279892 
045 2 |b d20250101  |b d20251231 
084 |a 231460  |2 nlm 
100 1 |a Zhang, Jianchao  |u Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu-shi, Tokyo 182-8585, Japan; junsuzuki@uec.ac.jp 
245 1 |a Hybrid Cramér-Rao Bound for Quantum Bayes Point Estimation with Nuisance Parameters 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a We develop a hybrid framework for quantum parameter estimation in the presence of nuisance parameters. In this scheme, the parameters of interest are treated as fixed non-random parameters while nuisance parameters are integrated out with respect to a prior (random parameters). Within this setting, we introduce the hybrid partial quantum Fisher information matrix (hpQFIM), defined by prior-averaging the nuisance block of the QFIM and taking a Schur complement, and derive a corresponding Cramér–Rao-type lower bound on the hybrid risk. We establish the structural properties of the hpQFIM, including inequalities that bracket it between computationally tractable approximations, as well as limiting behaviors under extreme priors. Operationally, the hybrid approach improves over pure point estimation since the optimal measurement for the parameters of interest depends only on the prior distribution of the nuisance, rather than on its unknown value. We illustrate the framework with analytically solvable qubit models and numerical examples, clarifying how partial prior information on nuisance variables can be systematically exploited in quantum metrology. 
653 |a Lower bounds 
653 |a Approximation 
653 |a Cramer-Rao bounds 
653 |a Random variables 
653 |a Fisher information 
653 |a Parameter estimation 
653 |a Localization 
653 |a Theorems 
653 |a Boundary conditions 
653 |a Efficiency 
653 |a Qubits (quantum computing) 
653 |a Nuisance 
700 1 |a Suzuki, Jun  |u Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu-shi, Tokyo 182-8585, Japan; junsuzuki@uec.ac.jp 
773 0 |t Entropy  |g vol. 27, no. 12 (2025), p. 1184-1205 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286279892/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286279892/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286279892/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch