Trajectory Planning Method for Multi-UUV Formation Rendezvous in Obstacle and Current Environments

Na minha lista:
Detalhes bibliográficos
Publicado no:Journal of Marine Science and Engineering vol. 13, no. 12 (2025), p. 2221-2245
Autor principal: Chen, Tao
Outros Autores: Wang, Kai, Wang Qingzhe
Publicado em:
MDPI AG
Assuntos:
Acesso em linha:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3286311084
003 UK-CbPIL
022 |a 2077-1312 
024 7 |a 10.3390/jmse13122221  |2 doi 
035 |a 3286311084 
045 2 |b d20250101  |b d20251231 
084 |a 231479  |2 nlm 
100 1 |a Chen, Tao 
245 1 |a Trajectory Planning Method for Multi-UUV Formation Rendezvous in Obstacle and Current Environments 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Formation rendezvous is a critical phase during the deployment or recovery of multiple unmanned underwater vehicles (UUVs) in cooperative missions, and represents one of the core problems in multi-UUV cooperative planning. In practical marine environments with obstacles and currents, multiple constraints must be simultaneously satisfied, including obstacle avoidance, inter-UUV collision prevention, kinematic limitations, and specified initial and terminal states. These requirements make energy-optimal trajectory planning for multi-UUV formation rendezvous highly challenging. Traditional integrated cooperative planning methods often struggle to obtain optimal or even feasible solutions due to the complexity of constraints and the vastness of the solution space. To address these issues, a dual-layer planning framework for multi-UUV formation rendezvous trajectory planning in environments with obstacles and currents is proposed in this paper. The framework consists of an initial individual trajectory planning layer and a secondary cooperative planning layer. In the initial individual trajectory planning stage, the Grey Wolf Optimization (GWO) algorithm is employed to optimize high-order terms of polynomial curves, generating initial trajectories for individual UUVs that satisfy obstacle avoidance, kinematic constraints, and state requirements. These trajectories are then used as inputs to the secondary cooperative planning stage. In the cooperative stage, a Self-Adaptive Particle Swarm Optimization (SAPSO) is introduced to explicitly address inter-UUV collision avoidance while incorporating all individual constraints, ultimately producing a cooperative rendezvous trajectory that minimizes overall energy consumption. To validate the effectiveness of the proposed method, a simulation environment incorporating vortex flow fields and real-world island topography was constructed. Simulation results demonstrate that the proposed hierarchical trajectory planning method is capable of generating energy-optimal formation rendezvous trajectories that satisfy multiple constraints for multi-UUV systems in environments with obstacles and ocean currents, highlighting its strong potential for practical engineering applications. 
653 |a Islands 
653 |a Kinematics 
653 |a Marine environment 
653 |a Particle swarm optimization 
653 |a Collaboration 
653 |a Unmanned underwater vehicles 
653 |a Collision avoidance 
653 |a Optimization 
653 |a Ocean currents 
653 |a Polynomials 
653 |a Unmanned aerial vehicles 
653 |a Rendezvous trajectories 
653 |a Objectives 
653 |a Energy consumption 
653 |a Underwater vehicles 
653 |a Efficiency 
653 |a Vehicles 
653 |a Autonomous underwater vehicles 
653 |a Wind power 
653 |a Trajectory optimization 
653 |a Planning 
653 |a Energy 
653 |a Solution space 
653 |a Algorithms 
653 |a Constraints 
653 |a Trajectory planning 
653 |a Obstacle avoidance 
653 |a Economic 
700 1 |a Wang, Kai 
700 1 |a Wang Qingzhe 
773 0 |t Journal of Marine Science and Engineering  |g vol. 13, no. 12 (2025), p. 2221-2245 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286311084/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286311084/fulltextwithgraphics/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286311084/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch