Extracting Advertising Elements and the Voice of Customers in Online Game Reviews

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Theoretical and Applied Electronic Commerce Research vol. 20, no. 4 (2025), p. 321-343
Autor principal: Nalluri Venkateswarlu
Otros Autores: Yi-Yun, Wang, Wu-Der, Jeng, Long-Sheng, Chen
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3286312693
003 UK-CbPIL
022 |a 0718-1876 
024 7 |a 10.3390/jtaer20040321  |2 doi 
035 |a 3286312693 
045 2 |b d20251001  |b d20251231 
084 |a 78730  |2 nlm 
100 1 |a Nalluri Venkateswarlu  |u Department of Information Management, Chaoyang University of Technology, Taichung 413310, Taiwan; nallurivenkey7@gmail.com 
245 1 |a Extracting Advertising Elements and the Voice of Customers in Online Game Reviews 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The growth of electronic word-of-mouth (eWOM) on digital platforms has heightened the need to distinguish authentic user-generated content from covert promotional material. This study proposes an integrated framework combining Natural Language Processing (NLP), machine learning, and Latent Dirichlet Allocation (LDA) to classify sentiment and detect advertising features in online game reviews. Reviews from the Steam platform were analyzed using Support Vector Machine (SVM), Decision Tree, and Naïve Bayes classifiers, with class imbalance addressed through SMOTE and SMOTE–Tomek techniques. The SMOTE-augmented SVM achieved the highest performance, with 98.18% overall accuracy and 97.52% negative sentiment detection. LDA and Quality Function Deployment (QFD) further uncovered latent promotional themes, providing insights into how advertising elements manifest in positive reviews and how negative feedback reflects genuine user concerns. The framework assists platform managers in enhancing eWOM credibility and supports marketers in designing data-driven advertising strategies. By bridging sentiment analysis with covert marketing detection, this research contributes a novel methodological approach for assessing review trustworthiness, improving transparency, and fostering consumer trust in digital information environments. 
653 |a Accuracy 
653 |a User behavior 
653 |a Computer & video games 
653 |a Datasets 
653 |a Computer peripherals 
653 |a Data mining 
653 |a Social networks 
653 |a Questionnaires 
653 |a User generated content 
653 |a Advertising 
653 |a Machine learning 
653 |a Feedback 
653 |a Decision trees 
653 |a Sentiment analysis 
653 |a Support vector machines 
653 |a Marketing 
653 |a Product reviews 
653 |a Classification 
653 |a Digital marketing 
653 |a Natural language processing 
653 |a Quality function deployment 
653 |a Negative feedback 
700 1 |a Yi-Yun, Wang  |u Graduate School of Software and Information Science, Iwate Prefectural University, Iwate 020-0693, Japan; winona25544@gmail.com 
700 1 |a Wu-Der, Jeng  |u Department of Industrial Engineering and Management, Minghsin University of Science and Technology, Hsinchu 304001, Taiwan; jwd@must.edu.tw 
700 1 |a Long-Sheng, Chen  |u Department of Information Management, Chaoyang University of Technology, Taichung 413310, Taiwan; nallurivenkey7@gmail.com 
773 0 |t Journal of Theoretical and Applied Electronic Commerce Research  |g vol. 20, no. 4 (2025), p. 321-343 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286312693/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286312693/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286312693/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch