TL-Efficient-SE: A Transfer Learning-Based Attention-Enhanced Model for Fingerprint Liveness Detection Across Multi-Sensor Spoof Attacks

Na minha lista:
Detalhes bibliográficos
Publicado no:Machine Learning and Knowledge Extraction vol. 7, no. 4 (2025), p. 113-133
Autor principal: Pallakonda Archana
Outros Autores: Raj Rayappa David Amar, Yanamala Rama Muni Reddy, Napoli, Christian, Randieri Cristian
Publicado em:
MDPI AG
Assuntos:
Acesso em linha:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
Descrição
Resumo:Fingerprint authentication systems encounter growing threats from presentation attacks, making strong liveness detection crucial. This work presents a deep learning-based framework integrating EfficientNetB0 with a Squeeze-and-Excitation (SE) attention approach, using transfer learning to enhance feature extraction. The LivDet 2015 dataset, composed of both real and fake fingerprints taken using four optical sensors and spoofs made using PlayDoh, Ecoflex, and Gelatine, is used to train and test the model architecture. Stratified splitting is performed once the images being input have been scaled and normalized to conform to EfficientNetB0’s format. The SE module adaptively improves appropriate features to competently differentiate live from fake inputs. The classification head comprises fully connected layers, dropout, batch normalization, and a sigmoid output. Empirical results exhibit accuracy between 98.50% and 99.50%, with an AUC varying from 0.978 to 0.9995, providing high precision and recall for genuine users, and robust generalization across unseen spoof types. Compared to existing methods like Slim-ResCNN and HyiPAD, the novelty of our model lies in the Squeeze-and-Excitation mechanism, which enhances feature discrimination by adaptively recalibrating the channels of the feature maps, thereby improving the model’s ability to differentiate between live and spoofed fingerprints. This model has practical implications for deployment in real-time biometric systems, including mobile authentication and secure access control, presenting an efficient solution for protecting against sophisticated spoofing methods. Future research will focus on sensor-invariant learning and adaptive thresholds to further enhance resilience against varying spoofing attacks.
ISSN:2504-4990
DOI:10.3390/make7040113
Fonte:Advanced Technologies & Aerospace Database