TL-Efficient-SE: A Transfer Learning-Based Attention-Enhanced Model for Fingerprint Liveness Detection Across Multi-Sensor Spoof Attacks

Gardado en:
Detalles Bibliográficos
Publicado en:Machine Learning and Knowledge Extraction vol. 7, no. 4 (2025), p. 113-133
Autor Principal: Pallakonda Archana
Outros autores: Raj Rayappa David Amar, Yanamala Rama Muni Reddy, Napoli, Christian, Randieri Cristian
Publicado:
MDPI AG
Materias:
Acceso en liña:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3286316444
003 UK-CbPIL
022 |a 2504-4990 
024 7 |a 10.3390/make7040113  |2 doi 
035 |a 3286316444 
045 2 |b d20251001  |b d20251231 
100 1 |a Pallakonda Archana  |u Department of Computer Science and Engineering, National Institute of Technology Warangal, Warangal 506004, India; ap23csr1r06@student.nitw.ac.in 
245 1 |a TL-Efficient-SE: A Transfer Learning-Based Attention-Enhanced Model for Fingerprint Liveness Detection Across Multi-Sensor Spoof Attacks 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Fingerprint authentication systems encounter growing threats from presentation attacks, making strong liveness detection crucial. This work presents a deep learning-based framework integrating EfficientNetB0 with a Squeeze-and-Excitation (SE) attention approach, using transfer learning to enhance feature extraction. The LivDet 2015 dataset, composed of both real and fake fingerprints taken using four optical sensors and spoofs made using PlayDoh, Ecoflex, and Gelatine, is used to train and test the model architecture. Stratified splitting is performed once the images being input have been scaled and normalized to conform to EfficientNetB0’s format. The SE module adaptively improves appropriate features to competently differentiate live from fake inputs. The classification head comprises fully connected layers, dropout, batch normalization, and a sigmoid output. Empirical results exhibit accuracy between 98.50% and 99.50%, with an AUC varying from 0.978 to 0.9995, providing high precision and recall for genuine users, and robust generalization across unseen spoof types. Compared to existing methods like Slim-ResCNN and HyiPAD, the novelty of our model lies in the Squeeze-and-Excitation mechanism, which enhances feature discrimination by adaptively recalibrating the channels of the feature maps, thereby improving the model’s ability to differentiate between live and spoofed fingerprints. This model has practical implications for deployment in real-time biometric systems, including mobile authentication and secure access control, presenting an efficient solution for protecting against sophisticated spoofing methods. Future research will focus on sensor-invariant learning and adaptive thresholds to further enhance resilience against varying spoofing attacks. 
653 |a Feature extraction 
653 |a Machine learning 
653 |a Excitation 
653 |a Accuracy 
653 |a Fingerprint verification 
653 |a Deep learning 
653 |a Datasets 
653 |a Spoofing 
653 |a Adaptability 
653 |a Biometrics 
653 |a Sensors 
653 |a Feature maps 
653 |a Access control 
653 |a Optical measuring instruments 
653 |a Real time 
653 |a Authentication 
700 1 |a Raj Rayappa David Amar  |u Amrita School of Artificial Intelligence, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India; rd_amarraj@cb.amrita.edu 
700 1 |a Yanamala Rama Muni Reddy  |u Department of Electronics and Communication Engineering, Indian Institute of Information Technology Design and Manufacturing (IIITD&M) Kancheepuram, Chennai 600127, India; yanamalamunireddy@iiitdm.ac.in 
700 1 |a Napoli, Christian  |u Department of Computer, Control, and Management Engineering “Antonio Ruberti”, Sapienza University of Rome, 00185 Rome, Italy; cnapoli@diag.uniroma1.it 
700 1 |a Randieri Cristian  |u Department of Computer, Control, and Management Engineering “Antonio Ruberti”, Sapienza University of Rome, 00185 Rome, Italy; cnapoli@diag.uniroma1.it 
773 0 |t Machine Learning and Knowledge Extraction  |g vol. 7, no. 4 (2025), p. 113-133 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286316444/abstract/embedded/09EF48XIB41FVQI7?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286316444/fulltextwithgraphics/embedded/09EF48XIB41FVQI7?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286316444/fulltextPDF/embedded/09EF48XIB41FVQI7?source=fedsrch