FPGA-Accelerated ESN with Chaos Training for Financial Time Series Prediction

Sparad:
Bibliografiska uppgifter
I publikationen:Machine Learning and Knowledge Extraction vol. 7, no. 4 (2025), p. 160-182
Huvudupphov: Hassaan, Zeinab A
Övriga upphov: Yacoub, Mohammed H, Said, Lobna A
Utgiven:
MDPI AG
Ämnen:
Länkar:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Taggar: Lägg till en tagg
Inga taggar, Lägg till första taggen!

MARC

LEADER 00000nab a2200000uu 4500
001 3286316598
003 UK-CbPIL
022 |a 2504-4990 
024 7 |a 10.3390/make7040160  |2 doi 
035 |a 3286316598 
045 2 |b d20251001  |b d20251231 
100 1 |a Hassaan, Zeinab A  |u Nanoelectronics Integrated Systems Center (NISC), Nile University, Giza 12588, Egypt; zhssaan@nu.edu.eg 
245 1 |a FPGA-Accelerated ESN with Chaos Training for Financial Time Series Prediction 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Improving financial time series forecasting presents challenges because models often struggle to identify diverse fault patterns in unseen data. This issue is critical in fintech, where accurate and reliable forecasting of financial data is essential for effective risk management and informed investment strategies. This work addresses these challenges by initializing the weights and biases of two proposed models, Gated Recurrent Units (GRUs) and the Echo State Network (ESN), with different chaotic sequences to enhance prediction accuracy and capabilities. We compare reservoir computing (RC) and recurrent neural network (RNN) models with and without the integration of chaotic systems, utilizing standard initialization. The models are validated on six different datasets, including the 500 largest publicly traded companies in the US (S&P500), the Irish Stock Exchange Quotient (ISEQ) dataset, the XAU and USD forex pair (XAU/USD), the USD and JPY forex pair with respect to the currency exchange rate (USD/JPY), Chinese daily stock prices, and the top 100 index of UK companies (FTSE 100). The ESN model, combined with the Lorenz system, achieves the lowest error among other models, reinforcing the effectiveness of chaos-trained models for prediction. The proposed ESN model, accelerated by the Kintex-Ultrascale KCU105 FPGA board, achieves a maximum frequency of <inline-formula>83.5</inline-formula> MHz and a power consumption of <inline-formula>0.677</inline-formula> W. The results of the hardware simulation align with MATLAB R2025b fixed-point analysis. 
651 4 |a United States--US 
653 |a Currency exchanges 
653 |a Stock prices 
653 |a Accuracy 
653 |a Risk management 
653 |a Deep learning 
653 |a Datasets 
653 |a Forecasting 
653 |a Optimization 
653 |a Field programmable gate arrays 
653 |a Stock exchanges 
653 |a Technology stocks 
653 |a Time series 
653 |a Dynamical systems 
653 |a Investment strategy 
653 |a Machine learning 
653 |a Fourier transforms 
653 |a American dollar 
653 |a Foreign exchange rates 
653 |a Securities markets 
653 |a Neural networks 
653 |a Effectiveness 
653 |a Recurrent neural networks 
653 |a Stochastic models 
653 |a Sequences 
653 |a Lorenz system 
653 |a Algorithms 
700 1 |a Yacoub, Mohammed H  |u School of Engineering and Applied Sciences, Nile University, Giza 12588, Egypt; m.hassan2127@nu.edu.eg 
700 1 |a Said, Lobna A  |u Nanoelectronics Integrated Systems Center (NISC), Nile University, Giza 12588, Egypt; zhssaan@nu.edu.eg 
773 0 |t Machine Learning and Knowledge Extraction  |g vol. 7, no. 4 (2025), p. 160-182 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286316598/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286316598/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286316598/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch