Mechanochemically Synthesized Nanocrystalline Cu2ZnSnSe4 as a Multifunctional Material for Energy Conversion and Storage Applications

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:Nanomaterials vol. 15, no. 24 (2025), p. 1866-1883
المؤلف الرئيسي: Johnrose, Angel Agnes
مؤلفون آخرون: Rajan, Sajitha Devika, Panneerselvam Vengatesh, Anandhi, Sivaramalingam, Amirtharaj Mosas Kamalan Kirubaharan, Beauno, Stephen, Shyju, Thankaraj Salammal
منشور في:
MDPI AG
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full Text + Graphics
Full Text - PDF
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!

MARC

LEADER 00000nab a2200000uu 4500
001 3286331447
003 UK-CbPIL
022 |a 2079-4991 
024 7 |a 10.3390/nano15241866  |2 doi 
035 |a 3286331447 
045 2 |b d20250101  |b d20251231 
084 |a 231543  |2 nlm 
100 1 |a Johnrose, Angel Agnes  |u Research Scholar, Reg.No.20213282132013, Department of Physics and Research Centre, Women’s Christian College, Nagercoil, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli 629001, India; angelagnes1987@gmail.com 
245 1 |a Mechanochemically Synthesized Nanocrystalline Cu<sub>2</sub>ZnSnSe<sub>4</sub> as a Multifunctional Material for Energy Conversion and Storage Applications 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Cu2ZnSnSe4 is a promising light-absorbing material for cost-effective and eco-friendly thin-film solar cells; however, its synthesis often leads to secondary phases that limit device efficiency. To overcome these challenges, we devised a straightforward and efficient method to obtain single-phase Cu2ZnSnSe4 nanocrystalline powders directly from the elements Cu, Zn, Sn, and Se via mechanochemical synthesis followed by vacuum annealing at 450 °C. Phase evolution monitored by X-ray diffraction (XRD) and Raman spectroscopy at two-hour milling intervals confirmed the formation of phase-pure kesterite Cu2ZnSnSe4 and enabled tracking of transient secondary phases. Raman spectra revealed the characteristic A1 vibrational modes of the kesterite structure, while XRD peaks and Rietveld refinement (χ2 ~ 1) validated single-phase formation with crystallite sizes of 10–15 nm and dislocation densities of 3.00–3.20 1015 lines/m2. Optical analysis showed a direct bandgap of ~1.1 eV, and estimated linear and nonlinear optical constants validate its potential for photovoltaic applications. Scanning electron microscopy (SEM) analysis showed uniformly distributed particles 50–60 nm, and energy dispersive X-ray (EDS) analysis confirmed a near-stoichiometric Cu:Zn:Sn:Se ratio of 2:1:1:4. X-ray photoelectron spectroscopy (XPS) identified the expected oxidation states (Cu+, Zn2+, Sn4+, and Se2−). Electrical characterization revealed p-type conductivity with a mobility (μ) of 2.09 cm2/Vs, sheet resistance (ρ) of 4.87 Ω cm, and carrier concentrations of 1.23 × 1019 cm−3. Galvanostatic charge–discharge testing (GCD) demonstrated an energy density of 2.872 Wh/kg−1 and a power density of 1083 W kg−1, highlighting the material’s additional potential for energy storage applications. 
651 4 |a United States--US 
651 4 |a Japan 
653 |a Raman spectra 
653 |a Crystallites 
653 |a Scanning electron microscopy 
653 |a Zinc 
653 |a Copper zinc tin selenide 
653 |a X-ray diffraction 
653 |a Diffraction 
653 |a Electrical resistivity 
653 |a Copper 
653 |a Point defects 
653 |a Raman spectroscopy 
653 |a Energy storage 
653 |a Thin films 
653 |a Synthesis 
653 |a Spectroscopy 
653 |a Efficiency 
653 |a Multifunctional materials 
653 |a Energy conversion 
653 |a Electromagnetic absorption 
653 |a Alternative energy 
653 |a Lasers 
653 |a Selenium 
653 |a Software 
653 |a Semiconductors 
653 |a Dislocation density 
653 |a Solar cells 
653 |a Oxidation 
653 |a Vibration mode 
653 |a Photoelectrons 
653 |a Vacuum annealing 
653 |a Photovoltaic cells 
653 |a Crystal structure 
653 |a Crystals 
653 |a Photovoltaics 
653 |a Spectrum analysis 
653 |a Nonlinear optics 
653 |a Optical analysis 
653 |a X ray photoelectron spectroscopy 
653 |a Electrical properties 
653 |a Morphology 
653 |a Photoelectron spectroscopy 
653 |a Tin 
700 1 |a Rajan, Sajitha Devika  |u Centre of Excellence for Energy Research, Sathyabama Institute of Science and Technology, Chennai 600119, India; devikasrajan20@gmail.com (D.R.S.); vengatesh.irc@sathyabama.ac.in (V.P.) 
700 1 |a Panneerselvam Vengatesh  |u Centre of Excellence for Energy Research, Sathyabama Institute of Science and Technology, Chennai 600119, India; devikasrajan20@gmail.com (D.R.S.); vengatesh.irc@sathyabama.ac.in (V.P.) 
700 1 |a Anandhi, Sivaramalingam  |u Department of Physics, Sathyabama Institute of Science and Technology, Chennai 600119, India; anandhis.physics@sathyabama.ac.in 
700 1 |a Amirtharaj Mosas Kamalan Kirubaharan  |u Centre for Functional and Surface-Functionalized Glass, Alexander Dubcek University of Trencín, 911 50 Trencín, Slovakia; kamalan.mosas@tnuni.sk 
700 1 |a Beauno, Stephen  |u Department of Physics and Research Centre, Women’s Christian College, Nagercoil, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli 629001, India 
700 1 |a Shyju, Thankaraj Salammal  |u Centre of Excellence for Energy Research, Sathyabama Institute of Science and Technology, Chennai 600119, India; devikasrajan20@gmail.com (D.R.S.); vengatesh.irc@sathyabama.ac.in (V.P.) 
773 0 |t Nanomaterials  |g vol. 15, no. 24 (2025), p. 1866-1883 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286331447/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286331447/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286331447/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch