Dynamic Multi-Objective Controller Placement in SD-WAN: A GMM-MARL Hybrid Framework

Gardado en:
Detalles Bibliográficos
Publicado en:Network vol. 5, no. 4 (2025), p. 52-83
Autor Principal: Abdulghani, Abdulrahman M
Outros autores: Azizol, Abdullah, Rahiman, A R, Abdul Hamid Nor Asilah Wati, Akram Bilal Omar
Publicado:
MDPI AG
Materias:
Acceso en liña:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!
Descripción
Resumo:Modern Software-Defined Wide Area Networks (SD-WANs) require adaptive controller placement addressing multi-objective optimization where latency minimization, load balancing, and fault tolerance must be simultaneously optimized. Traditional static approaches fail under dynamic network conditions with evolving traffic patterns and topology changes. This paper presents a novel hybrid framework integrating Gaussian Mixture Model (GMM) clustering with Multi-Agent Reinforcement Learning (MARL) for dynamic controller placement. The approach leverages probabilistic clustering for intelligent MARL initialization, reducing exploration requirements. Centralized Training with Decentralized Execution (CTDE) enables distributed optimization through cooperative agents. Experimental evaluation using real-world topologies demonstrates a noticeable reduction in the latency, improvement in network balance, and significant computational efficiency versus existing methods. Dynamic adaptation experiments confirm superior scalability during network changes. The hybrid architecture achieves linear scalability through problem decomposition while maintaining real-time responsiveness, establishing practical viability.
ISSN:2673-8732
DOI:10.3390/network5040052
Fonte:Publicly Available Content Database