Low-Cost Optical Wireless Communication for Underwater IoT: LED and Photodiode System Design and Characterization
Guardado en:
| Publicado en: | Telecom vol. 6, no. 4 (2025), p. 95-107 |
|---|---|
| Autor principal: | |
| Otros Autores: | |
| Publicado: |
MDPI AG
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Resumen: | Underwater marine and freshwater environments are vast and mysterious, but our ability to explore them is limited by the inflexibility and inconvenience of monitoring systems. To overcome this problem, in this work, we present a proof-of-concept deployment of a real-time Internet of Underwater Things (IoUT) using blue light-emitting-diode-based visible light communication (VLC). Pulse-amplitude modulation with four levels is employed. To relax the focus point and increase the received power, four avalanche photodiodes (APDs) are adopted. Moreover, to reduce the error rate, the convolutional code with constraint-7 is used, which is the simplest to implement. Encoding and decoding are implemented by a field-programmable gate array. The results are verified by experimental demonstration. A baud rate of 9600 is used, but, unfortunately, we only have a 2 m long tank. System performance is improved when the number of APDs is increased; we investigated the effects of up to four APDs. Notably, bit error-free data transmission can be achieved. Additionally, this method would make underwater monitoring very conventional and dependable, and low-cost real-time monitoring would be possible, with data shown on the Grafana dashboard tool. |
|---|---|
| ISSN: | 2673-4001 |
| DOI: | 10.3390/telecom6040095 |
| Fuente: | Advanced Technologies & Aerospace Database |