Low-Cost Optical Wireless Communication for Underwater IoT: LED and Photodiode System Design and Characterization

Guardado en:
Detalles Bibliográficos
Publicado en:Telecom vol. 6, no. 4 (2025), p. 95-107
Autor principal: Kidsanapong, Puntsri
Otros Autores: Wannaree, Wongtrairat
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:Underwater marine and freshwater environments are vast and mysterious, but our ability to explore them is limited by the inflexibility and inconvenience of monitoring systems. To overcome this problem, in this work, we present a proof-of-concept deployment of a real-time Internet of Underwater Things (IoUT) using blue light-emitting-diode-based visible light communication (VLC). Pulse-amplitude modulation with four levels is employed. To relax the focus point and increase the received power, four avalanche photodiodes (APDs) are adopted. Moreover, to reduce the error rate, the convolutional code with constraint-7 is used, which is the simplest to implement. Encoding and decoding are implemented by a field-programmable gate array. The results are verified by experimental demonstration. A baud rate of 9600 is used, but, unfortunately, we only have a 2 m long tank. System performance is improved when the number of APDs is increased; we investigated the effects of up to four APDs. Notably, bit error-free data transmission can be achieved. Additionally, this method would make underwater monitoring very conventional and dependable, and low-cost real-time monitoring would be possible, with data shown on the Grafana dashboard tool.
ISSN:2673-4001
DOI:10.3390/telecom6040095
Fuente:Advanced Technologies & Aerospace Database