Low-Cost Optical Wireless Communication for Underwater IoT: LED and Photodiode System Design and Characterization

Guardado en:
Detalles Bibliográficos
Publicado en:Telecom vol. 6, no. 4 (2025), p. 95-107
Autor principal: Kidsanapong, Puntsri
Otros Autores: Wannaree, Wongtrairat
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3286356701
003 UK-CbPIL
022 |a 2673-4001 
024 7 |a 10.3390/telecom6040095  |2 doi 
035 |a 3286356701 
045 2 |b d20251001  |b d20251231 
100 1 |a Kidsanapong, Puntsri  |u Department of Electronics and Telecommunication Engineering, Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kaen Campus, Khon Kaen 40000, Thailand 
245 1 |a Low-Cost Optical Wireless Communication for Underwater IoT: LED and Photodiode System Design and Characterization 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Underwater marine and freshwater environments are vast and mysterious, but our ability to explore them is limited by the inflexibility and inconvenience of monitoring systems. To overcome this problem, in this work, we present a proof-of-concept deployment of a real-time Internet of Underwater Things (IoUT) using blue light-emitting-diode-based visible light communication (VLC). Pulse-amplitude modulation with four levels is employed. To relax the focus point and increase the received power, four avalanche photodiodes (APDs) are adopted. Moreover, to reduce the error rate, the convolutional code with constraint-7 is used, which is the simplest to implement. Encoding and decoding are implemented by a field-programmable gate array. The results are verified by experimental demonstration. A baud rate of 9600 is used, but, unfortunately, we only have a 2 m long tank. System performance is improved when the number of APDs is increased; we investigated the effects of up to four APDs. Notably, bit error-free data transmission can be achieved. Additionally, this method would make underwater monitoring very conventional and dependable, and low-cost real-time monitoring would be possible, with data shown on the Grafana dashboard tool. 
610 4 |a Xilinx Inc 
653 |a Wireless communications 
653 |a Freshwater environments 
653 |a Random access memory 
653 |a Underwater communication 
653 |a Decoding 
653 |a Light emitting diodes 
653 |a Systems design 
653 |a Avalanche diodes 
653 |a Data transmission 
653 |a Transmitters 
653 |a Photodiodes 
653 |a Codes 
653 |a Field programmable gate arrays 
653 |a Monitoring 
653 |a Monitoring systems 
653 |a Internet of Things 
653 |a Low cost 
653 |a Artificial intelligence 
653 |a Optical wireless 
653 |a Signal to noise ratio 
653 |a Error correction & detection 
653 |a Underwater exploration 
653 |a Sensors 
653 |a Algorithms 
653 |a Communications systems 
653 |a Real time 
653 |a Pulse amplitude modulation 
700 1 |a Wannaree, Wongtrairat  |u Department of Electronics Engineering, Faculty of Engineering and Technology, Rajamangala University of Technology Isan, Nakornratchasrima 30000, Thailand; wannaree.wo@rmuti.ac.th 
773 0 |t Telecom  |g vol. 6, no. 4 (2025), p. 95-107 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286356701/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286356701/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286356701/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch