Research on Fouling Shellfish on Marine Aquaculture Cages Detection Technology Based on an Improved Symmetric Faster R-CNN Detection Algorithm

Guardado en:
Detalles Bibliográficos
Publicado en:Symmetry vol. 17, no. 12 (2025), p. 2107-2131
Autor principal: Zhu Pengshuai
Otros Autores: Li, Hao, Chen, Junhua, Guo Chengjun
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:The development of detection and identification technologies for biofouling organisms on marine aquaculture cages is of paramount importance for the automation and intelligence of cleaning processes by Autonomous Underwater Vehicles (AUVs). The present study proposes a methodology for the detection of fouling shellfish on marine aquaculture cages. This methodology is based on an improved version of a symmetric Faster R-CNN: The original Visual Geometry Group 16-layer (VGG16) network is replaced with a 50-layer Residual Network with Aggregated Transformations (ResNeXt50) architecture, incorporating a Convolutional Block Attention Module (CBAM) to enhance feature extraction capabilities; In addition, the anchor box dimensions must be optimised concurrently with the Intersection over Union (IoU) threshold. This is to ensure the adaptation to the scale of the object; combined with the Multi-Scale Retinex with Single Scale Component and Color Restoration (MSRCR) algorithm with a view to achieving image enhancement. Experiments demonstrate that the enhanced model attains an average precision of 94.27%, signifying a 10.31% augmentation over the original model whilst necessitating a mere one-fifth of the original model’s weight. At an intersection-over-union (IoU) value of 0.5, the model attains a mean average precision (mAP) of 93.14%, surpassing numerous prevalent detection models. Furthermore, the employment of an image-enhanced dataset during the training of detection models has been demonstrated to yield an average precision that is 11.72 percentage points higher than that achieved through training with the original dataset. In summary, the technical approach proposed in this paper enables accurate and efficient detection and identification of fouling shellfish on marine aquaculture cages.
ISSN:2073-8994
DOI:10.3390/sym17122107
Fuente:Engineering Database