Research on Fouling Shellfish on Marine Aquaculture Cages Detection Technology Based on an Improved Symmetric Faster R-CNN Detection Algorithm

Guardado en:
Detalles Bibliográficos
Publicado en:Symmetry vol. 17, no. 12 (2025), p. 2107-2131
Autor principal: Zhu Pengshuai
Otros Autores: Li, Hao, Chen, Junhua, Guo Chengjun
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3286357224
003 UK-CbPIL
022 |a 2073-8994 
024 7 |a 10.3390/sym17122107  |2 doi 
035 |a 3286357224 
045 2 |b d20250101  |b d20251231 
084 |a 231635  |2 nlm 
100 1 |a Zhu Pengshuai  |u College of Science and Technology, Ningbo University, Cixi 315399, China; zps22190200@163.com (P.Z.); 
245 1 |a Research on Fouling Shellfish on Marine Aquaculture Cages Detection Technology Based on an Improved Symmetric Faster R-CNN Detection Algorithm 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The development of detection and identification technologies for biofouling organisms on marine aquaculture cages is of paramount importance for the automation and intelligence of cleaning processes by Autonomous Underwater Vehicles (AUVs). The present study proposes a methodology for the detection of fouling shellfish on marine aquaculture cages. This methodology is based on an improved version of a symmetric Faster R-CNN: The original Visual Geometry Group 16-layer (VGG16) network is replaced with a 50-layer Residual Network with Aggregated Transformations (ResNeXt50) architecture, incorporating a Convolutional Block Attention Module (CBAM) to enhance feature extraction capabilities; In addition, the anchor box dimensions must be optimised concurrently with the Intersection over Union (IoU) threshold. This is to ensure the adaptation to the scale of the object; combined with the Multi-Scale Retinex with Single Scale Component and Color Restoration (MSRCR) algorithm with a view to achieving image enhancement. Experiments demonstrate that the enhanced model attains an average precision of 94.27%, signifying a 10.31% augmentation over the original model whilst necessitating a mere one-fifth of the original model’s weight. At an intersection-over-union (IoU) value of 0.5, the model attains a mean average precision (mAP) of 93.14%, surpassing numerous prevalent detection models. Furthermore, the employment of an image-enhanced dataset during the training of detection models has been demonstrated to yield an average precision that is 11.72 percentage points higher than that achieved through training with the original dataset. In summary, the technical approach proposed in this paper enables accurate and efficient detection and identification of fouling shellfish on marine aquaculture cages. 
653 |a Behavior 
653 |a Accuracy 
653 |a Datasets 
653 |a Deep learning 
653 |a Artificial neural networks 
653 |a Biofouling 
653 |a Aquaculture 
653 |a Automation 
653 |a Shellfish 
653 |a Marine technology 
653 |a Efficiency 
653 |a Water quality 
653 |a Autonomous underwater vehicles 
653 |a Machine learning 
653 |a Intersections 
653 |a Image enhancement 
653 |a Neural networks 
653 |a Support vector machines 
653 |a Classification 
653 |a Algorithms 
653 |a Cages 
700 1 |a Li, Hao  |u College of Science and Technology, Ningbo University, Cixi 315399, China; zps22190200@163.com (P.Z.); 
700 1 |a Chen, Junhua  |u College of Science and Technology, Ningbo University, Cixi 315399, China; zps22190200@163.com (P.Z.); 
700 1 |a Guo Chengjun  |u College of Science and Technology, Ningbo University, Cixi 315399, China; zps22190200@163.com (P.Z.); 
773 0 |t Symmetry  |g vol. 17, no. 12 (2025), p. 2107-2131 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286357224/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286357224/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286357224/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch