Método Gráfico para establecer el campo de pendientes de una Ecuación Diferencial /
Trabajo orientado en el área de ecuaciones diferenciales enfocándose en el método gráfico para establecer el campo de pendiente de una ecuación diferencial y el método de aproximaciones numéricas para aproximar la solución de una ecuación diferencial. Presenta los métodos de Euler, Runge-Kutta de cu...
Guardado en:
| 主要作者: | |
|---|---|
| 其他作者: | , , |
| 格式: | Tesis 图书 |
| 语言: | 西班牙语 |
| 在线阅读: | Recurso Electrónico (PDF) Repositorio Institucional (UES) Ver en el OPAC |
| 标签: |
没有标签, 成为第一个标记此记录!
|
MARC
| LEADER | 00000nam a2200000 i 4500 | ||
|---|---|---|---|
| 001 | BFMO50108175 | ||
| 003 | SV-SsUSB | ||
| 005 | 20220316134820.0 | ||
| 006 | m fq a | ||
| 008 | 160706s2015 es a f bm f000 0 spa d | ||
| 040 | |a SV-SsUSB |b spa |c SV-SsUSB |e rda | ||
| 043 | |a nces--- | ||
| 094 | |a Matemáticas |b A-10 | ||
| 100 | 1 | |a Arias Ortiz, Israel. |9 5809 | |
| 245 | 1 | 0 | |a Método Gráfico para establecer el campo de pendientes de una Ecuación Diferencial / |c presentado por Arias Ortiz, Israel, Romero Vásquez, Juan Antonio, Vásquez Hernández, Francisco Javier ; docente director, Lic. José Antonio Hernández. |
| 264 | 0 | |a San Miguel : |b UES, FMO, |c 2015. | |
| 300 | |a 230 hojas : |b ilustraciones ; |c 28 cm + |e 1 disco de computadora (4 3/4 plg.) | ||
| 336 | |a texto |b txt |2 rdacontent | ||
| 336 | |3 material acompañante |a conjunto de datos para computadora |b cod |2 rdacontent | ||
| 337 | |a sin mediación |b n |2 rdamedia | ||
| 337 | |3 material acompañante |a computadora |b c |2 rdamedia | ||
| 338 | |a volumen |b nc |2 rdacarrier | ||
| 338 | |3 material acompañante |a disco de computadora |b cd |2 rdacarrier | ||
| 502 | |b Licenciado |c Universidad de El Salvador, Facultad Multidisciplinaria Oriental |d 2015. | ||
| 504 | |a Incluye referencias bibliográficas (hoja 229). | ||
| 520 | |a Trabajo orientado en el área de ecuaciones diferenciales enfocándose en el método gráfico para establecer el campo de pendiente de una ecuación diferencial y el método de aproximaciones numéricas para aproximar la solución de una ecuación diferencial. Presenta los métodos de Euler, Runge-Kutta de cuarto orden y el método multipasos de Adams-Bashforth-Moulton. Asimismo, se explica las ecuaciones mediante el uso del software para los métodos gráficos tales como el Maple y Geogebra. | ||
| 520 | |a ABSTRACT: Oriented work in the area of differential equations focusing on the graphical method to establish the slope field of a differential equation and the method of numerical approximations to approximate the solution of a differential equation. He introduces the fourth-order Euler, Runge-Kutta methods, and the Adams-Bashforth-Moulton multistep method. He also explains equations using software for graphical methods such as Maple and Geogebra. | ||
| 700 | 1 | |a Romero Vásquez, Juan Antonio. |9 5810 | |
| 700 | 1 | |a Vásquez Hernández, Francisco Javier. |9 5811 | |
| 700 | 1 | |9 2831 |a Hernández, José Antonio |e asesor. | |
| 856 | 4 | 0 | |u http://opac.fmoues.edu.sv/infolib/tesis/50108175.pdf |y Recurso Electrónico (PDF) |
| 856 | 4 | 0 | |u http://ri.ues.edu.sv/id/eprint/10294 |y Repositorio Institucional (UES) |q text/html |
| 942 | |2 Dewey Decimal Classification |c Tesis y disertaciones académicas | ||
| 999 | |c 18246 |d 18246 | ||
| 952 | |1 Disponible |2 Dewey Decimal Classification |8 Tesario |a Biblioteca Facultad Multidisciplinaria Oriental |b Biblioteca Facultad Multidisciplinaria Oriental |c Tesis |d 2016-08-09 |e 4 |g 10.00 |i 50108175 |l 1 |o Matemáticas A-10 |p 50108175 |r 2018-06-29 00:00:00 |s 2018-06-29 |u http://opac.fmoues.edu.sv/infolib/tesis/50108175.pdf |v 10.00 |w 2016-08-09 |y Tesis y disertaciones académicas | ||