SPARK: Static Program Analysis Reasoning and Retrieving Knowledge

Spremljeno u:
Bibliografski detalji
Izdano u:arXiv.org (Nov 3, 2017), p. n/a
Glavni autor: Sodsong, Wasuwee
Daljnji autori: Scholz, Bernhard, Chawla, Sanjay
Izdano:
Cornell University Library, arXiv.org
Teme:
Online pristup:Citation/Abstract
Full text outside of ProQuest
Oznake: Dodaj oznaku
Bez oznaka, Budi prvi tko označuje ovaj zapis!
Opis
Sažetak:Program analysis is a technique to reason about programs without executing them, and it has various applications in compilers, integrated development environments, and security. In this work, we present a machine learning pipeline that induces a security analyzer for programs by example. The security analyzer determines whether a program is either secure or insecure based on symbolic rules that were deduced by our machine learning pipeline. The machine pipeline is two-staged consisting of a Recurrent Neural Networks (RNN) and an Extractor that converts an RNN to symbolic rules. To evaluate the quality of the learned symbolic rules, we propose a sampling-based similarity measurement between two infinite regular languages. We conduct a case study using real-world data. In this work, we discuss the limitations of existing techniques and possible improvements in the future. The results show that with sufficient training data and a fair distribution of program paths it is feasible to deducing symbolic security rules for the OpenJDK library with millions lines of code.
ISSN:2331-8422
Izvor:Engineering Database