Khovanov's Heisenberg category, moments in free probability, and shifted symmetric functions

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Oct 14, 2016), p. n/a
Autor principal: Kvinge, Henry
Otros Autores: Licata, Anthony M, Mitchell, Stuart
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:We establish an isomorphism between the center of the Heisenberg category defined by Khovanov and the algebra \(\Lambda^*\) of shifted symmetric functions defined by Okounkov-Olshanski. We give a graphical description of the shifted power and Schur bases of \(\Lambda^*\) as elements of the center, and describe the curl generators of the center in the language of shifted symmetric functions. This latter description makes use of the transition and co-transition measures of Kerov and the noncommutative probability spaces of Biane.
ISSN:2331-8422
Fuente:Engineering Database