Khovanov's Heisenberg category, moments in free probability, and shifted symmetric functions
Guardado en:
| Publicado en: | arXiv.org (Oct 14, 2016), p. n/a |
|---|---|
| Autor principal: | |
| Otros Autores: | , |
| Publicado: |
Cornell University Library, arXiv.org
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full text outside of ProQuest |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Resumen: | We establish an isomorphism between the center of the Heisenberg category defined by Khovanov and the algebra \(\Lambda^*\) of shifted symmetric functions defined by Okounkov-Olshanski. We give a graphical description of the shifted power and Schur bases of \(\Lambda^*\) as elements of the center, and describe the curl generators of the center in the language of shifted symmetric functions. This latter description makes use of the transition and co-transition measures of Kerov and the noncommutative probability spaces of Biane. |
|---|---|
| ISSN: | 2331-8422 |
| Fuente: | Engineering Database |