Khovanov's Heisenberg category, moments in free probability, and shifted symmetric functions
Сохранить в:
| Опубликовано в:: | arXiv.org (Oct 14, 2016), p. n/a |
|---|---|
| Главный автор: | |
| Другие авторы: | , |
| Опубликовано: |
Cornell University Library, arXiv.org
|
| Предметы: | |
| Online-ссылка: | Citation/Abstract Full text outside of ProQuest |
| Метки: |
Нет меток, Требуется 1-ая метка записи!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 2080323095 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 2331-8422 | ||
| 035 | |a 2080323095 | ||
| 045 | 0 | |b d20161014 | |
| 100 | 1 | |a Kvinge, Henry | |
| 245 | 1 | |a Khovanov's Heisenberg category, moments in free probability, and shifted symmetric functions | |
| 260 | |b Cornell University Library, arXiv.org |c Oct 14, 2016 | ||
| 513 | |a Working Paper | ||
| 520 | 3 | |a We establish an isomorphism between the center of the Heisenberg category defined by Khovanov and the algebra \(\Lambda^*\) of shifted symmetric functions defined by Okounkov-Olshanski. We give a graphical description of the shifted power and Schur bases of \(\Lambda^*\) as elements of the center, and describe the curl generators of the center in the language of shifted symmetric functions. This latter description makes use of the transition and co-transition measures of Kerov and the noncommutative probability spaces of Biane. | |
| 653 | |a Isomorphism | ||
| 700 | 1 | |a Licata, Anthony M | |
| 700 | 1 | |a Mitchell, Stuart | |
| 773 | 0 | |t arXiv.org |g (Oct 14, 2016), p. n/a | |
| 786 | 0 | |d ProQuest |t Engineering Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/2080323095/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch |
| 856 | 4 | 0 | |3 Full text outside of ProQuest |u http://arxiv.org/abs/1610.04571 |