Khovanov's Heisenberg category, moments in free probability, and shifted symmetric functions
Uloženo v:
| Vydáno v: | arXiv.org (Oct 14, 2016), p. n/a |
|---|---|
| Hlavní autor: | |
| Další autoři: | , |
| Vydáno: |
Cornell University Library, arXiv.org
|
| Témata: | |
| On-line přístup: | Citation/Abstract Full text outside of ProQuest |
| Tagy: |
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstrakt: | We establish an isomorphism between the center of the Heisenberg category defined by Khovanov and the algebra \(\Lambda^*\) of shifted symmetric functions defined by Okounkov-Olshanski. We give a graphical description of the shifted power and Schur bases of \(\Lambda^*\) as elements of the center, and describe the curl generators of the center in the language of shifted symmetric functions. This latter description makes use of the transition and co-transition measures of Kerov and the noncommutative probability spaces of Biane. |
|---|---|
| ISSN: | 2331-8422 |
| Zdroj: | Engineering Database |