Khovanov's Heisenberg category, moments in free probability, and shifted symmetric functions

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org (Oct 14, 2016), p. n/a
Hlavní autor: Kvinge, Henry
Další autoři: Licata, Anthony M, Mitchell, Stuart
Vydáno:
Cornell University Library, arXiv.org
Témata:
On-line přístup:Citation/Abstract
Full text outside of ProQuest
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Abstrakt:We establish an isomorphism between the center of the Heisenberg category defined by Khovanov and the algebra \(\Lambda^*\) of shifted symmetric functions defined by Okounkov-Olshanski. We give a graphical description of the shifted power and Schur bases of \(\Lambda^*\) as elements of the center, and describe the curl generators of the center in the language of shifted symmetric functions. This latter description makes use of the transition and co-transition measures of Kerov and the noncommutative probability spaces of Biane.
ISSN:2331-8422
Zdroj:Engineering Database