Ingredients for Responsible Machine Learning: A Commented Review of The Hitchhiker’s Guide to Responsible Machine Learning
Guardado en:
| Publicado en: | Journal of Statistical Theory and Applications vol. 21, no. 4 (Dec 2022), p. 175 |
|---|---|
| Autor principal: | |
| Otros Autores: | , , |
| Publicado: |
Springer Nature B.V.
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Resumen: | In The hitchhiker’s guide to responsible machine learning, Biecek, Kozak, and Zawada (here BKZ) provide an illustrated and engaging step-by-step guide on how to perform a machine learning (ML) analysis such that the algorithms, the software, and the entire process is interpretable and transparent for both the data scientist and the end user. This review summarises BKZ’s book and elaborates on three elements key to ML analyses: inductive inference, causality, and interpretability. |
|---|---|
| ISSN: | 1538-7887 2214-1766 |
| DOI: | 10.1007/s44199-022-00048-y |
| Fuente: | Computer Science Database |