Ingredients for Responsible Machine Learning: A Commented Review of The Hitchhiker’s Guide to Responsible Machine Learning

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Statistical Theory and Applications vol. 21, no. 4 (Dec 2022), p. 175
Autor principal: Marmolejo-Ramos, Fernando
Otros Autores: Ospina, Raydonal, García-Ceja, Enrique, Correa, Juan C.
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:In The hitchhiker’s guide to responsible machine learning, Biecek, Kozak, and Zawada (here BKZ) provide an illustrated and engaging step-by-step guide on how to perform a machine learning (ML) analysis such that the algorithms, the software, and the entire process is interpretable and transparent for both the data scientist and the end user. This review summarises BKZ’s book and elaborates on three elements key to ML analyses: inductive inference, causality, and interpretability.
ISSN:1538-7887
2214-1766
DOI:10.1007/s44199-022-00048-y
Fuente:Computer Science Database