Ingredients for Responsible Machine Learning: A Commented Review of The Hitchhiker’s Guide to Responsible Machine Learning

Gardado en:
Detalles Bibliográficos
Publicado en:Journal of Statistical Theory and Applications vol. 21, no. 4 (Dec 2022), p. 175
Autor Principal: Marmolejo-Ramos, Fernando
Outros autores: Ospina, Raydonal, García-Ceja, Enrique, Correa, Juan C.
Publicado:
Springer Nature B.V.
Materias:
Acceso en liña:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 2746830839
003 UK-CbPIL
022 |a 1538-7887 
022 |a 2214-1766 
024 7 |a 10.1007/s44199-022-00048-y  |2 doi 
035 |a 2746830839 
045 2 |b d20221201  |b d20221231 
100 1 |a Marmolejo-Ramos, Fernando  |u University of South Australia, Centre for Change and Complexity in Learning, Adelaide, Australia (GRID:grid.1026.5) (ISNI:0000 0000 8994 5086) 
245 1 |a Ingredients for Responsible Machine Learning: A Commented Review of <i>The Hitchhiker’s Guide to Responsible Machine Learning</i> 
260 |b Springer Nature B.V.  |c Dec 2022 
513 |a Journal Article 
520 3 |a In The hitchhiker’s guide to responsible machine learning, Biecek, Kozak, and Zawada (here BKZ) provide an illustrated and engaging step-by-step guide on how to perform a machine learning (ML) analysis such that the algorithms, the software, and the entire process is interpretable and transparent for both the data scientist and the end user. This review summarises BKZ’s book and elaborates on three elements key to ML analyses: inductive inference, causality, and interpretability. 
653 |a Variables 
653 |a Machine learning 
653 |a Algorithms 
653 |a Data analysis 
653 |a Datasets 
653 |a Hypothesis testing 
653 |a Regression analysis 
653 |a Coronaviruses 
653 |a COVID-19 
653 |a Classification 
653 |a Causality 
653 |a Statistical prediction 
700 1 |a Ospina, Raydonal  |u Universidade Federal de Pernambuco, CASTLab, Department of Statistics, Recife, Brazil (GRID:grid.411227.3) (ISNI:0000 0001 0670 7996) 
700 1 |a García-Ceja, Enrique  |u Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, Mexico (GRID:grid.419886.a) (ISNI:0000 0001 2203 4701) 
700 1 |a Correa, Juan C.  |u CESA Business School, Bogotá, Bogotá, DC, Colombia (GRID:grid.441875.b) (ISNI:0000 0004 0486 0518) 
773 0 |t Journal of Statistical Theory and Applications  |g vol. 21, no. 4 (Dec 2022), p. 175 
786 0 |d ProQuest  |t Computer Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2746830839/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/2746830839/fulltext/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2746830839/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch