Towards Heterogeneity-Aware Automatic Optimization of Time-Critical Systems via Graph Machine Learning

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:ProQuest Dissertations and Theses (2024)
المؤلف الرئيسي: Canizales Turcios, Ronaldo Armando
منشور في:
ProQuest Dissertations & Theses
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full Text - PDF
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
مستخلص:Modern computing's hardware architecture is increasingly heterogeneous, making optimization challenging; particularly on time-critical systems where correct results are as important as low execution time. First, we explore a study case about the manual optimization of an earthquake engineering-related application, where we parallelized accelerographic records processing. Second, we present egg-no-graph, our novel code-to-graph representation based on equality saturation, which outperforms state-of-the-art methods at estimating execution time. Third, we show how our 150M+ instances heterogeneity-aware dataset was built. Lastly, we redesign a graph-level embedding algorithm, making it converge orders of magnitude faster while maintaining similar accuracy than state-of-the-art on our downstream task, thus being feasible for use on time-critical systems.
ردمك:9798346870159
المصدر:ProQuest Dissertations & Theses Global