A Fusion Approach of Dependency Syntax and Sentiment Polarity for Feature Label Extraction in Commodity Reviews
محفوظ في:
| الحاوية / القاعدة: | arXiv.org (Dec 20, 2024), p. n/a |
|---|---|
| المؤلف الرئيسي: | |
| منشور في: |
Cornell University Library, arXiv.org
|
| الموضوعات: | |
| الوصول للمادة أونلاين: | Citation/Abstract Full text outside of ProQuest |
| الوسوم: |
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
| مستخلص: | This study analyzes 13,218 product reviews from JD.com, covering four categories: mobile phones, computers, cosmetics, and food. A novel method for feature label extraction is proposed by integrating dependency parsing and sentiment polarity analysis. The proposed method addresses the challenges of low robustness in existing extraction algorithms and significantly enhances extraction accuracy. Experimental results show that the method achieves an accuracy of 0.7, with recall and F-score both stabilizing at 0.8, demonstrating its effectiveness. However, challenges such as dependence on matching dictionaries and the limited scope of extracted feature tags require further investigation in future research. |
|---|---|
| تدمد: | 2331-8422 |
| المصدر: | Engineering Database |