A Fusion Approach of Dependency Syntax and Sentiment Polarity for Feature Label Extraction in Commodity Reviews

Guardado en:
書目詳細資料
發表在:arXiv.org (Dec 20, 2024), p. n/a
主要作者: Xu, Jianfei
出版:
Cornell University Library, arXiv.org
主題:
在線閱讀:Citation/Abstract
Full text outside of ProQuest
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
Resumen:This study analyzes 13,218 product reviews from JD.com, covering four categories: mobile phones, computers, cosmetics, and food. A novel method for feature label extraction is proposed by integrating dependency parsing and sentiment polarity analysis. The proposed method addresses the challenges of low robustness in existing extraction algorithms and significantly enhances extraction accuracy. Experimental results show that the method achieves an accuracy of 0.7, with recall and F-score both stabilizing at 0.8, demonstrating its effectiveness. However, challenges such as dependence on matching dictionaries and the limited scope of extracted feature tags require further investigation in future research.
ISSN:2331-8422
Fuente:Engineering Database