Short-Term Forecasting of Thermostatic and Residential Loads Using Long Short-Term Memory Recurrent Neural Networks
محفوظ في:
| الحاوية / القاعدة: | arXiv.org (Dec 20, 2024), p. n/a |
|---|---|
| المؤلف الرئيسي: | |
| مؤلفون آخرون: | , , |
| منشور في: |
Cornell University Library, arXiv.org
|
| الموضوعات: | |
| الوصول للمادة أونلاين: | Citation/Abstract Full text outside of ProQuest |
| الوسوم: |
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
| مستخلص: | Internet of Things (IoT) devices in smart grids enable intelligent energy management for grid managers and personalized energy services for consumers. Investigating a smart grid with IoT devices requires a simulation framework with IoT devices modeling. However, there lack comprehensive study on the modeling of IoT devices in smart grids. This paper investigates the IoT device modeling of a thermostatic load and implements the recurrent neural networks model for short-term load forecasting in this IoT-based thermostatic load. The recurrent neural network structure is leveraged to build a load forecasting model on temporal correlation. The temporal recurrent neural network layers including long short-term memory cells are employed to learn the data from both the simulation platform and New South Wales residential datasets. The simulation results are provided for demonstration. |
|---|---|
| تدمد: | 2331-8422 |
| المصدر: | Engineering Database |