Short-Term Forecasting of Thermostatic and Residential Loads Using Long Short-Term Memory Recurrent Neural Networks

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:arXiv.org (Dec 20, 2024), p. n/a
المؤلف الرئيسي: Nguyen, Bang
مؤلفون آخرون: Panwar, Mayank, Hovsapian, Rob, Agalgaonkar, Yashodhan
منشور في:
Cornell University Library, arXiv.org
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full text outside of ProQuest
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
مستخلص:Internet of Things (IoT) devices in smart grids enable intelligent energy management for grid managers and personalized energy services for consumers. Investigating a smart grid with IoT devices requires a simulation framework with IoT devices modeling. However, there lack comprehensive study on the modeling of IoT devices in smart grids. This paper investigates the IoT device modeling of a thermostatic load and implements the recurrent neural networks model for short-term load forecasting in this IoT-based thermostatic load. The recurrent neural network structure is leveraged to build a load forecasting model on temporal correlation. The temporal recurrent neural network layers including long short-term memory cells are employed to learn the data from both the simulation platform and New South Wales residential datasets. The simulation results are provided for demonstration.
تدمد:2331-8422
المصدر:Engineering Database