Short-Term Forecasting of Thermostatic and Residential Loads Using Long Short-Term Memory Recurrent Neural Networks

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org (Dec 20, 2024), p. n/a
Hlavní autor: Nguyen, Bang
Další autoři: Panwar, Mayank, Hovsapian, Rob, Agalgaonkar, Yashodhan
Vydáno:
Cornell University Library, arXiv.org
Témata:
On-line přístup:Citation/Abstract
Full text outside of ProQuest
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Abstrakt:Internet of Things (IoT) devices in smart grids enable intelligent energy management for grid managers and personalized energy services for consumers. Investigating a smart grid with IoT devices requires a simulation framework with IoT devices modeling. However, there lack comprehensive study on the modeling of IoT devices in smart grids. This paper investigates the IoT device modeling of a thermostatic load and implements the recurrent neural networks model for short-term load forecasting in this IoT-based thermostatic load. The recurrent neural network structure is leveraged to build a load forecasting model on temporal correlation. The temporal recurrent neural network layers including long short-term memory cells are employed to learn the data from both the simulation platform and New South Wales residential datasets. The simulation results are provided for demonstration.
ISSN:2331-8422
Zdroj:Engineering Database