Adaptive User Interface Generation Through Reinforcement Learning: A Data-Driven Approach to Personalization and Optimization

שמור ב:
מידע ביבליוגרפי
הוצא לאור ב:arXiv.org (Dec 22, 2024), p. n/a
מחבר ראשי: Sun, Qi
מחברים אחרים: Xue, Yayun, Song, Zhijun
יצא לאור:
Cornell University Library, arXiv.org
נושאים:
גישה מקוונת:Citation/Abstract
Full text outside of ProQuest
תגים: הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!
תיאור
Resumen:This study introduces an adaptive user interface generation technology, emphasizing the role of Human-Computer Interaction (HCI) in optimizing user experience. By focusing on enhancing the interaction between users and intelligent systems, this approach aims to automatically adjust interface layouts and configurations based on user feedback, streamlining the design process. Traditional interface design involves significant manual effort and struggles to meet the evolving personalized needs of users. Our proposed system integrates adaptive interface generation with reinforcement learning and intelligent feedback mechanisms to dynamically adjust the user interface, better accommodating individual usage patterns. In the experiment, the OpenAI CLIP Interactions dataset was utilized to verify the adaptability of the proposed method, using click-through rate (CTR) and user retention rate (RR) as evaluation metrics. The findings highlight the system's ability to deliver flexible and personalized interface solutions, providing a novel and effective approach for user interaction design and ultimately enhancing HCI through continuous learning and adaptation.
ISSN:2331-8422
Fuente:Engineering Database