Adaptive User Interface Generation Through Reinforcement Learning: A Data-Driven Approach to Personalization and Optimization

Đã lưu trong:
Chi tiết về thư mục
Xuất bản năm:arXiv.org (Dec 22, 2024), p. n/a
Tác giả chính: Sun, Qi
Tác giả khác: Xue, Yayun, Song, Zhijun
Được phát hành:
Cornell University Library, arXiv.org
Những chủ đề:
Truy cập trực tuyến:Citation/Abstract
Full text outside of ProQuest
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
Miêu tả
Bài tóm tắt:This study introduces an adaptive user interface generation technology, emphasizing the role of Human-Computer Interaction (HCI) in optimizing user experience. By focusing on enhancing the interaction between users and intelligent systems, this approach aims to automatically adjust interface layouts and configurations based on user feedback, streamlining the design process. Traditional interface design involves significant manual effort and struggles to meet the evolving personalized needs of users. Our proposed system integrates adaptive interface generation with reinforcement learning and intelligent feedback mechanisms to dynamically adjust the user interface, better accommodating individual usage patterns. In the experiment, the OpenAI CLIP Interactions dataset was utilized to verify the adaptability of the proposed method, using click-through rate (CTR) and user retention rate (RR) as evaluation metrics. The findings highlight the system's ability to deliver flexible and personalized interface solutions, providing a novel and effective approach for user interaction design and ultimately enhancing HCI through continuous learning and adaptation.
số ISSN:2331-8422
Nguồn:Engineering Database