Advancing packaging technology: computational fluid dynamics modeling for capillary underfill encapsulant in multi-chip heterogenous packages

Shranjeno v:
Bibliografske podrobnosti
izdano v:Soldering & Surface Mount Technology vol. 37, no. 1 (2025), p. 1-16
Glavni avtor: Muhammad Aqil Azman
Drugi avtorji: Mz Abdullah, Loh, Wei Keat, Ooi, Chun Keang
Izdano:
Emerald Group Publishing Limited
Teme:
Online dostop:Citation/Abstract
Full Text
Full Text - PDF
Oznake: Označite
Brez oznak, prvi označite!

MARC

LEADER 00000nab a2200000uu 4500
001 3150563501
003 UK-CbPIL
022 |a 0954-0911 
022 |a 1758-6836 
024 7 |a 10.1108/SSMT-05-2024-0022  |2 doi 
035 |a 3150563501 
045 2 |b d20250101  |b d20250331 
084 |a 46141  |2 nlm 
100 1 |a Muhammad Aqil Azman  |u School of Mechanical Engineering, Universiti Sains Malaysia – Kampus Kejuruteraan, Nibong Tebal, Malaysia and Department of Assembly and Test Technology Development, Intel Microelectronics, Kulim, Malaysia 
245 1 |a Advancing packaging technology: computational fluid dynamics modeling for capillary underfill encapsulant in multi-chip heterogenous packages 
260 |b Emerald Group Publishing Limited  |c 2025 
513 |a Journal Article 
520 3 |a PurposeThe purpose of this study is to investigate the dynamics of capillary underfill flow (CUF) in flip-chip packaging, particularly in a multi-chip configuration. The study aims to understand how various parameters, such as chip-to-chip spacing (S12), chip thickness (tc) and others, affect the underfill flow process. By using computational fluid dynamics (CFD) simulations and experimental studies, the goal is to provide insights into understanding the dynamics of CUF in heterogeneous electronic packaging.Design/methodology/approachThe paper introduces a CFD analysis and experimental study on CUF in a multi-chip configuration, aiming to understand underfill flow dynamics. A 3D geometry models of multi-chip arrangement are created using computer-aided design (CAD) software. After that, the CAD models are meshed and simulated in Ansys Fluent using incompressible and non-Newtonian fluid properties. The study maintains S12 of 2.86 and tc of 22.29 between experimental and simulation data for results validation. Next, a various of S12 values (1.14, 2.86, 5.71, 8.57, 14.29 and 20) which focus on tc of 22.29 have been investigated. Further studies have been conduct using S12 of 5.71 and tc of 8.00, 14.29 and 22.29.FindingsResults show a strong correlation between simulation and experiment which validate the correctness and robustness of simulation. Further parameter’s studies using simulation for various of S12 indicated that higher S12 values lead to faster flow. This effect is due to large underfill weight from reservoir able to flow into S12 region which contributed to higher mass momentum movement. Furthermore, the effect of various of tc shows that the thicker the chip the faster the underfill to flow in S12 region.Research limitations/implicationsThe intentional exclusion of solder bump pattern arrangements from the experiment and simulation may limit the study's ability to fully understand the impact of solder bump patterns on underfill flow. Therefore, more parameters can be investigated such as solder bump pattern, underfill weight and dispense pattern in the future using CFD.Practical implicationsThe manuscript provides a comprehensive examination of the contributions of CFD to the advancement of knowledge regarding CUF phenomena in heterogeneous electronic packaging assemblies. Moreover, it delineates the utilization of CFD methodologies to assess the influence of chip-to-chip spacing (S12) and the thickness of the chip (tc) on the underfill flow characteristics.Originality/valueThis paper fulfills an identified need of computational fluid dynamics method to study capillary underfill flow dynamics in heterogenous electronic packaging. 
653 |a Behavior 
653 |a Package design 
653 |a Configuration management 
653 |a Investigations 
653 |a Fluid dynamics 
653 |a Fluid flow 
653 |a Parameter robustness 
653 |a Three dimensional flow 
653 |a Boundary conditions 
653 |a Contact angle 
653 |a Incompressible flow 
653 |a Electronic packaging 
653 |a Simulation 
653 |a Viscosity 
653 |a Artificial intelligence 
653 |a Solders 
653 |a Capillary flow 
653 |a Newtonian fluids 
653 |a Mathematical models 
653 |a Flow characteristics 
653 |a Computer aided design--CAD 
653 |a Computational fluid dynamics 
653 |a Computer aided engineering--CAE 
653 |a Thickness 
653 |a Weight 
653 |a Non Newtonian fluids 
700 1 |a Mz Abdullah  |u School of Mechanical Engineering, Universiti Sains Malaysia – Engineering Campus Seri Ampangan, Nibong Tebal, Malaysia 
700 1 |a Loh, Wei Keat  |u Department of Assembly and Test Technology Development, Intel Microelectronics, Kulim, Malaysia 
700 1 |a Ooi, Chun Keang  |u Department of Assembly and Test Technology Development, Intel Microelectronics, Kulim, Malaysia 
773 0 |t Soldering & Surface Mount Technology  |g vol. 37, no. 1 (2025), p. 1-16 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3150563501/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3150563501/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3150563501/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch