A Quintic Spline-Based Computational Method for Solving Singularly Perturbed Periodic Boundary Value Problems

Guardat en:
Dades bibliogràfiques
Publicat a:Axioms vol. 14, no. 1 (2025), p. 73
Autor principal: Arumugam, Puvaneswari
Altres autors: Thynesh, Valanarasu, Muthusamy, Chandru, Ramos, Higinio
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!
Descripció
Resum:This work aims to provide approximate solutions for singularly perturbed problems with periodic boundary conditions using quintic B-splines and collocation. The well-known Shishkin mesh strategy is applied for mesh construction. Convergence analysis demonstrates that the method achieves parameter-uniform convergence with fourth-order accuracy in the maximum norm. Numerical examples are presented to validate the theoretical estimates. Additionally, the standard hybrid finite difference scheme, a cubic spline scheme, and the proposed method are compared to demonstrate the effectiveness of the present approach.
ISSN:2075-1680
DOI:10.3390/axioms14010073
Font:Engineering Database