A Quintic Spline-Based Computational Method for Solving Singularly Perturbed Periodic Boundary Value Problems

Uloženo v:
Podrobná bibliografie
Vydáno v:Axioms vol. 14, no. 1 (2025), p. 73
Hlavní autor: Arumugam, Puvaneswari
Další autoři: Thynesh, Valanarasu, Muthusamy, Chandru, Ramos, Higinio
Vydáno:
MDPI AG
Témata:
On-line přístup:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Abstrakt:This work aims to provide approximate solutions for singularly perturbed problems with periodic boundary conditions using quintic B-splines and collocation. The well-known Shishkin mesh strategy is applied for mesh construction. Convergence analysis demonstrates that the method achieves parameter-uniform convergence with fourth-order accuracy in the maximum norm. Numerical examples are presented to validate the theoretical estimates. Additionally, the standard hybrid finite difference scheme, a cubic spline scheme, and the proposed method are compared to demonstrate the effectiveness of the present approach.
ISSN:2075-1680
DOI:10.3390/axioms14010073
Zdroj:Engineering Database