Dam Deformation Data Preprocessing with Optimized Variational Mode Decomposition and Kernel Density Estimation
Guardado en:
| Publicado en: | Remote Sensing vol. 17, no. 4 (2025), p. 718 |
|---|---|
| Autor principal: | |
| Otros Autores: | , , , |
| Publicado: |
MDPI AG
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Resumen: | Deformation is one of the critical response quantities reflecting the structural safety of dams. To enhance outlier identification and denoising in dam deformation monitoring data, this study proposes a novel preprocessing method based on optimized Variational Mode Decomposition (VMD) and Kernel Density Estimation (KDE). The approach systematically processes data in three steps: First, VMD decomposes raw data into intrinsic mode functions without recursion. The parallel Jaya algorithm is used to adaptively optimize VMD parameters for improved decomposition. Second, the intrinsic mode functions containing outlier and noise characteristics are identified and separated using sample entropy and correlation coefficients. Finally, KDE thresholds are applied for outlier localization, while a data superposition method ensures effective denoising. Validation using simulated deformation data and Global Navigation Satellite Systems (GNSS)-based observed horizontal deformation from dam engineering demonstrates the method’s robustness in accurately identifying outliers and denoising data, achieving superior preprocessing performance. |
|---|---|
| ISSN: | 2072-4292 |
| DOI: | 10.3390/rs17040718 |
| Fuente: | Advanced Technologies & Aerospace Database |