Dam Deformation Data Preprocessing with Optimized Variational Mode Decomposition and Kernel Density Estimation

Guardado en:
Detalles Bibliográficos
Publicado en:Remote Sensing vol. 17, no. 4 (2025), p. 718
Autor principal: Chen, Siyu
Otros Autores: Lin, Chaoning, Gu, Yanchang, Sheng, Jinbao, Mohammad Amin Hariri-Ardebili
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:Deformation is one of the critical response quantities reflecting the structural safety of dams. To enhance outlier identification and denoising in dam deformation monitoring data, this study proposes a novel preprocessing method based on optimized Variational Mode Decomposition (VMD) and Kernel Density Estimation (KDE). The approach systematically processes data in three steps: First, VMD decomposes raw data into intrinsic mode functions without recursion. The parallel Jaya algorithm is used to adaptively optimize VMD parameters for improved decomposition. Second, the intrinsic mode functions containing outlier and noise characteristics are identified and separated using sample entropy and correlation coefficients. Finally, KDE thresholds are applied for outlier localization, while a data superposition method ensures effective denoising. Validation using simulated deformation data and Global Navigation Satellite Systems (GNSS)-based observed horizontal deformation from dam engineering demonstrates the method’s robustness in accurately identifying outliers and denoising data, achieving superior preprocessing performance.
ISSN:2072-4292
DOI:10.3390/rs17040718
Fuente:Advanced Technologies & Aerospace Database