Dam Deformation Data Preprocessing with Optimized Variational Mode Decomposition and Kernel Density Estimation

Guardat en:
Dades bibliogràfiques
Publicat a:Remote Sensing vol. 17, no. 4 (2025), p. 718
Autor principal: Chen, Siyu
Altres autors: Lin, Chaoning, Gu, Yanchang, Sheng, Jinbao, Mohammad Amin Hariri-Ardebili
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3171211824
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17040718  |2 doi 
035 |a 3171211824 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Chen, Siyu  |u Dam Safety Management Department, Nanjing Hydraulic Research Institute, Nanjing 210029, China; <email>siyuchen@nhri.cn</email> (S.C.); ; Dam Safety Management Center of the Ministry of Water Resources, Nanjing 210029, China 
245 1 |a Dam Deformation Data Preprocessing with Optimized Variational Mode Decomposition and Kernel Density Estimation 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Deformation is one of the critical response quantities reflecting the structural safety of dams. To enhance outlier identification and denoising in dam deformation monitoring data, this study proposes a novel preprocessing method based on optimized Variational Mode Decomposition (VMD) and Kernel Density Estimation (KDE). The approach systematically processes data in three steps: First, VMD decomposes raw data into intrinsic mode functions without recursion. The parallel Jaya algorithm is used to adaptively optimize VMD parameters for improved decomposition. Second, the intrinsic mode functions containing outlier and noise characteristics are identified and separated using sample entropy and correlation coefficients. Finally, KDE thresholds are applied for outlier localization, while a data superposition method ensures effective denoising. Validation using simulated deformation data and Global Navigation Satellite Systems (GNSS)-based observed horizontal deformation from dam engineering demonstrates the method’s robustness in accurately identifying outliers and denoising data, achieving superior preprocessing performance. 
653 |a Dams 
653 |a Outliers (statistics) 
653 |a Structural engineering 
653 |a Accuracy 
653 |a Wavelet transforms 
653 |a Structural safety 
653 |a Deformation 
653 |a Optimization 
653 |a Signal processing 
653 |a Deformation effects 
653 |a Spectrum allocation 
653 |a Localization 
653 |a Density 
653 |a Correlation coefficients 
653 |a Correlation coefficient 
653 |a Statistical analysis 
653 |a Data analysis 
653 |a Preprocessing 
653 |a Lagrange multiplier 
653 |a Fourier transforms 
653 |a Noise reduction 
653 |a Dam engineering 
653 |a Algorithms 
653 |a Decomposition 
653 |a Methods 
653 |a Satellite observation 
653 |a Global navigation satellite system 
700 1 |a Lin, Chaoning  |u College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China 
700 1 |a Gu, Yanchang  |u Dam Safety Management Department, Nanjing Hydraulic Research Institute, Nanjing 210029, China; <email>siyuchen@nhri.cn</email> (S.C.); ; Dam Safety Management Center of the Ministry of Water Resources, Nanjing 210029, China 
700 1 |a Sheng, Jinbao  |u Dam Safety Management Department, Nanjing Hydraulic Research Institute, Nanjing 210029, China; <email>siyuchen@nhri.cn</email> (S.C.); ; Dam Safety Management Center of the Ministry of Water Resources, Nanjing 210029, China 
700 1 |a Mohammad Amin Hariri-Ardebili  |u Department of Civil, Environment, and Architectural Engineering, University of Colorado, Boulder, CO 80309, USA; <email>mohammad.haririardebili@colorado.edu</email>; College of Computer, Mathematical and Natural Sciences, University of Maryland, College Park, MD 20742, USA 
773 0 |t Remote Sensing  |g vol. 17, no. 4 (2025), p. 718 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3171211824/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3171211824/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3171211824/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch